login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225503
Least triangular number t such that t = prime(n)*triangular(m) for some m>0, or 0 if no such t exists.
5
6, 3, 15, 21, 66, 78, 1326, 190, 1035, 435, 465, 17205, 861, 903, 9870, 5565, 1567335, 16836, 20100, 2556, 2628, 49770, 55278, 4005, 42195, 413595, 47895, 10100265, 5995, 1437360, 32131, 8646, 1352190, 19559385, 54397665, 1642578, 12246, 52975, 501501, 134940, 336324807802305
OFFSET
1,1
COMMENTS
Conjecture: a(n) > 0.
a(n) = (x^2-1)/8 where x is the least odd solution > 1 of the Pell-like equation x^2 - prime(n)*y^2 = 1 - prime(n). - Robert Israel, Jan 08 2015
LINKS
Robert Israel, Table of n, a(n) for n = 1..1000 (n = 1..200 from Zak Seidov).
EXAMPLE
See A225502.
MAPLE
F:= proc(n) local p, S, x, y, z, cands, s;
p:= ithprime(n);
S:= {isolve(x^2 - p*y^2 = 1-p)};
for z from 0 do
cands:= select(s -> (subs(s, x) > 1 and subs(s, x)::odd), simplify(eval(S, _Z1=z)));
if cands <> {} then
x:= min(map(subs, cands, x));
return((x^2-1)/8)
fi
od;
end proc:
map(F, [$1..100]); # Robert Israel, Jan 08 2015
MATHEMATICA
a[n_] := Module[{p, x0, sol, x, y}, p = Prime[n]; x0 = Which[n == 1, 7, n == 2, 5, True, sol = Table[Solve[x > 1 && y > 1 && x^2 - p y^2 == 1 - p, {x, y}, Integers] /. C[1] -> c, {c, 0, 1}] // Simplify; Select[x /. Flatten[sol, 1], OddQ] // Min]; (x0^2 - 1)/8];
Array[a, 171] (* Jean-François Alcover, Apr 02 2019, after Robert Israel *)
PROG
(C)
#include <stdio.h>
#define TOP 300
typedef unsigned long long U64;
U64 isTriangular(U64 a) {
U64 sr = 1ULL<<32, s, b, t;
if (a < (sr/2)*(sr+1)) sr>>=1;
while (a < sr*(sr+1)/2) sr>>=1;
for (b = sr>>1; b; b>>=1) {
s = sr+b;
if (s&1) t = s*((s+1)/2);
else t = (s/2)*(s+1);
if (t >= s && a >= t) sr = s;
}
return (sr*(sr+1)/2 == a);
}
int main() {
U64 i, j, k, m, tm, p, pp = 1, primes[TOP];
for (primes[0]=2, i = 3; pp < TOP; i+=2) {
for (p = 1; p < pp; ++p) if (i%primes[p]==0) break;
if (p==pp) {
primes[pp++] = i;
for (j=p=primes[pp-2], m=tm=1; ; j=k, m++, tm+=m) {
if ((k = p*tm) < j) k=0;
if (isTriangular(k)) break;
}
printf("%llu, ", k);
}
}
return 0;
}
(PARI) a(n) = {p = prime(n); k = 1; while (! ((t=k*(k+1)/2) && ((t % p) == 0) && ispolygonal(t/p, 3)), k++); t; } \\ Michel Marcus, Jan 08 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, May 09 2013
EXTENSIONS
a(171) from Giovanni Resta, Jun 19 2013
STATUS
approved