login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362625
a(n) = Sum_{k not divides n - k, 0 <= k < n} k.
1
0, 0, 1, 1, 6, 3, 15, 11, 22, 23, 45, 22, 66, 59, 69, 71, 120, 84, 153, 112, 158, 179, 231, 144, 256, 263, 283, 266, 378, 267, 435, 367, 444, 479, 503, 397, 630, 611, 641, 550, 780, 621, 861, 766, 798, 923, 1035, 772, 1086, 1018, 1143, 1112, 1326, 1119, 1337, 1212, 1448
OFFSET
1,5
COMMENTS
a(n) is the total distance from n to each of its nondivisors. For example, a(6)=3 since the nondivisors of 6 are 4,5 and (6-4)+(6-5) = 2+1 = 3.
FORMULA
a(n) = n*(n-1)/2 - n*tau(n) + sigma(n). [Previous name.]
a(n) = n*(n - tau(n)) - antisigma(n).
a(n) = Sum_{k=1..n} (n - k) * (ceiling(n/k) - floor(n/k)).
a(n) = A161680(n) - A094471(n).
a(p) = (p-1)*(p-2)/2, for primes p.
MAPLE
divides := (k, n) -> k = n or (k > 0 and irem(n, k) = 0):
A362625 := n -> local k; add(`if`(divides(n - k, n), 0, k), k = 0..n - 1):
seq(A362625(n), n = 1..57); # Peter Luschny, Nov 14 2023
MATHEMATICA
Table[n (n - 1)/2 - n*DivisorSigma[0, n] + DivisorSigma[1, n], {n, 100}]
(* Alternative: *)
a[n_] := Sum[If[Divisible[n, n - k], 0, k], {k, 0, n - 1}]
Table[a[n], {n, 1, 57}] (* Peter Luschny, Nov 14 2023 *)
PROG
(PARI) a(n) = n*(n-1)/2 - n*numdiv(n) + sigma(n); \\ Michel Marcus, Apr 28 2023
(Python)
from math import prod
from sympy import factorint
def A362625(n):
f = factorint(n)
return (n*(n-1)>>1)-n*prod(e+1 for e in f.values())+prod((p**(e+1)-1)//(p-1) for p, e in f.items()) # Chai Wah Wu, Apr 28 2023
(SageMath)
def A362625(n): return sum(k for k in (0..n-1) if not (n-k).divides(n))
print([A362625(n) for n in srange(1, 58)]) # Peter Luschny, Nov 14 2023
CROSSREFS
Cf. A000005 (tau), A000203 (sigma), A024816 (antisigma), A049820 (n-d(n)), A094471, A161680.
Sequence in context: A097917 A116570 A335567 * A352015 A225503 A302350
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 28 2023
EXTENSIONS
Simpler name by Peter Luschny, Nov 14 2023
STATUS
approved