login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097917
Denominator of 2*zeta_K(-1) where K is the totally real field Q(sqrt(n)), as n runs through the squarefree numbers.
5
6, 3, 15, 1, 3, 3, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 3, 1, 1, 3, 3, 1, 3, 3, 3, 1, 3, 3, 1, 3, 3, 1, 1, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 3, 1, 3, 3, 3, 3, 3, 1, 1, 1, 3, 1, 3, 3, 1, 1, 3, 3, 3, 1, 1, 3, 3, 3, 1, 3, 3, 1, 3, 1, 1, 1, 3, 3, 3, 3, 1, 3, 3, 3, 3
OFFSET
1,1
REFERENCES
F. Hirzebruch, Hilbert modular surfaces, Ges. Abh. II, 225-323.
LINKS
F. Hirzebruch, Hilbert modular surfaces, L'Enseignement Math., 19 (1973), 183-281. See p. 200.
EXAMPLE
1/6, 1/3, 1/15, 1, 4/3, 7/3, 7/3, 1/3, 10/3, 4, ...
PROG
(Sage) [(round(60*QuadraticField(d).zeta_function(100)(-1).real())/30).denominator() for d in range(2, 100) if Integer(d).is_squarefree()] # Robin Visser, Feb 28 2024
(PARI)
z(d) = -(1/2)*bernfrac(2)*d*sum(k=1, d-1, kronecker(d, k)*subst(bernpol(2), x, k/d)*(-1/2))
{v=[]; for(k=2, 100, if(issquarefree(k), my(d=k); if(k%4 <> 1, d = 4*k); v=concat(v, denominator(2*z(d)) ))); v} \\ Thomas Scheuerle, Feb 28 2024
CROSSREFS
Cf. A097916.
Sequence in context: A345056 A049784 A341746 * A116570 A335567 A362625
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Sep 04 2004
EXTENSIONS
More terms from Robin Visser, Feb 28 2024
STATUS
approved