login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190330
a(n) = n + [n*r/s] + [n*t/s]; r=1, s=sqrt(2), t=1/s.
3
1, 4, 6, 8, 10, 13, 14, 17, 19, 22, 23, 26, 28, 30, 32, 35, 37, 39, 41, 44, 45, 48, 50, 52, 54, 57, 59, 61, 63, 66, 67, 70, 72, 75, 76, 79, 81, 83, 85, 88, 89, 92, 94, 97, 98, 101, 103, 105, 107, 110, 112, 114, 116, 119, 120, 123, 125, 128, 129, 132, 134, 136, 138, 141, 142, 145, 147, 150, 151, 154, 156, 158, 160, 163, 165, 167
OFFSET
1,2
COMMENTS
See A190329.
LINKS
MAPLE
r:=1: s:=sqrt(2): t:=1/s: seq(n+floor(n*r/s)+floor(n*t/s), n=1..10^4); # Muniru A Asiru, Jan 31 2018
MATHEMATICA
r=1; s=2^(1/2); t=1/s;
a[n_] := n + Floor[n*s/r] + Floor[n*t/r];
b[n_] := n + Floor[n*r/s] + Floor[n*t/s];
c[n_] := n + Floor[n*r/t] + Floor[n*s/t];
Table[a[n], {n, 1, 120}] (*A190329*)
Table[b[n], {n, 1, 120}] (*A190330*)
Table[c[n], {n, 1, 120}] (*A187338*)
Table[n + Floor[n/Sqrt[2]] + Floor[n/2], {n, 1, 50}] (* G. C. Greubel, Jan 30 2018 *)
PROG
(PARI) for(n=1, 50, print1(n + floor(n/sqrt(2)) + floor(n/2), ", ")) \\ G. C. Greubel, Jan 30 2018
(Magma) [n + Floor(n/Sqrt(2)) + Floor(n/2): n in [1..50]]; // G. C. Greubel, Jan 30 2018
CROSSREFS
Sequence in context: A073669 A073670 A090169 * A186291 A189473 A189383
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 08 2011
STATUS
approved