login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272338
Numbers such that antisigma(n) mod sigma(n) = phi(n), where antisigma(n) is the sum of the numbers less than n that do not divide n, sigma(n) is the sum of the divisors of n and phi(n) is the Euler totient function of n.
2
3, 9, 27, 81, 243, 319, 729, 2187, 3615, 6561, 8159, 9807, 19683, 32791, 59049, 103679, 177147, 432864, 531441, 788852, 871215, 1594323, 2779519, 2826863, 2858240, 4782969, 7213536, 10036415, 14348907, 20428863, 24423359, 29036799, 33385279, 43046721
OFFSET
1,1
COMMENTS
A000244 is a subset of this sequence.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..73 (terms < 2*10^12)
FORMULA
Solutions of the equation A024816(n) mod A000203(n) = A000010(n).
EXAMPLE
27*28/2 mod sigma(27) = 378 mod 40 = 18 = phi(27).
MAPLE
with(numtheory): P:=proc(q) local n;
for n from 1 to q do if (n*(n+1)/2) mod sigma(n)=phi(n) then print(n); fi;
od; end: P(10^6);
MATHEMATICA
Select[Range[10^5], Function[n, Mod[Total@ First@ #, Total@ Last@ #] == EulerPhi@ n &@ {Complement[Range@ n, #], #} &@ Divisors@ n]] (* Michael De Vlieger, Apr 27 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paolo P. Lava, Apr 26 2016
EXTENSIONS
a(27)-a(34) from Giovanni Resta, May 01 2016
STATUS
approved