login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272335
Decimal expansion of a function approximation constant which is the analog of Gibbs's constant 2*G/Pi (A036793) for de la Vallée-Poussin sums.
0
1, 1, 4, 2, 7, 2, 8, 1, 2, 6, 9, 3, 0, 6, 8, 1, 2, 8, 4, 8, 1, 0, 2, 1, 8, 4, 5, 9, 5, 6, 6, 5, 7, 1, 1, 1, 9, 3, 0, 1, 1, 0, 1, 5, 0, 4, 5, 2, 9, 4, 7, 0, 2, 3, 9, 5, 7, 1, 7, 1, 2, 5, 3, 0, 9, 9, 2, 9, 0, 5, 7, 4, 5, 0, 5, 6, 8, 1, 5, 3, 5, 5, 5, 8, 4, 0, 1, 0, 3, 0, 3, 3, 7, 4, 0, 2, 6, 8, 2, 9, 9
OFFSET
1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.1 Gibbs-Wilbraham Constant, p. 248.
LINKS
R. P. Boyer and W. M. Y. Goh Generalized Gibbs phenomenon for Fourier partial sums and de la Vallée-Poussin sums, J. Appl. Math. Comput. 37 (2011) 421-442, p. 11.
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2024; p. 33.
FORMULA
Equals (2/Pi)*Integral_{t=0..2*Pi/3} (cos(t) - cos(2*t))/t^2 dt.
Equals (2/Pi)*(2*Si(4*Pi/3) - Si(2*Pi/3)), where Si is the Sine integral function.
EXAMPLE
1.14272812693068128481021845956657111930110150452947023957171253...
MATHEMATICA
(2/Pi)(2 SinIntegral[4 Pi/3] - SinIntegral[2 Pi/3]) // N[#, 101]& // RealDigits // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved