Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 18 2024 03:33:18
%S 1,1,4,2,7,2,8,1,2,6,9,3,0,6,8,1,2,8,4,8,1,0,2,1,8,4,5,9,5,6,6,5,7,1,
%T 1,1,9,3,0,1,1,0,1,5,0,4,5,2,9,4,7,0,2,3,9,5,7,1,7,1,2,5,3,0,9,9,2,9,
%U 0,5,7,4,5,0,5,6,8,1,5,3,5,5,5,8,4,0,1,0,3,0,3,3,7,4,0,2,6,8,2,9,9
%N Decimal expansion of a function approximation constant which is the analog of Gibbs's constant 2*G/Pi (A036793) for de la Vallée-Poussin sums.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.1 Gibbs-Wilbraham Constant, p. 248.
%H R. P. Boyer and W. M. Y. Goh <a href="http://www.math.drexel.edu/~rboyer/papers/generalized_gibbs.pdf">Generalized Gibbs phenomenon for Fourier partial sums and de la Vallée-Poussin sums</a>, J. Appl. Math. Comput. 37 (2011) 421-442, p. 11.
%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, arXiv:2001.00578 [math.HO], 2020-2024; p. 33.
%F Equals (2/Pi)*Integral_{t=0..2*Pi/3} (cos(t) - cos(2*t))/t^2 dt.
%F Equals (2/Pi)*(2*Si(4*Pi/3) - Si(2*Pi/3)), where Si is the Sine integral function.
%e 1.14272812693068128481021845956657111930110150452947023957171253...
%t (2/Pi)(2 SinIntegral[4 Pi/3] - SinIntegral[2 Pi/3]) // N[#, 101]& // RealDigits // First
%Y Cf. A036792, A036793, A243267, A243268, A245535.
%K nonn,cons
%O 1,3
%A _Jean-François Alcover_, Apr 26 2016