login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A272342 a(n) = 27*8^n. 0
27, 216, 1728, 13824, 110592, 884736, 7077888, 56623104, 452984832, 3623878656, 28991029248, 231928233984, 1855425871872, 14843406974976, 118747255799808, 949978046398464, 7599824371187712, 60798594969501696 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

a(n) are cubes that can be expressed as sum of exactly four distinct powers of two: a(n)=2^3n + 2^(3n+1) + 2^(3n+3) + 2^(3n+4). For example a(0) = 2^0 + 2^1 + 2^3 + 2^4 = 1 + 2 + 8 + 16 = 27. It is conjectured the a(n) are the only cubes that can be expressed as sum of exactly four distinct nonnegative powers of two (tested on cubes up to (10^7)^3).

LINKS

Table of n, a(n) for n=0..17.

FORMULA

a(n) = 27*8^n = 2^3n + 2^(3n+1) + 2^(3n+3) + 2^(3n+4).

a(n) = 8*a(n-1), n>0; a(0)=27.

G.f.: 27/(1-8*x).

E.g.f.: 27*exp(8*x).

a(n) = 27*A001018(n). - Michel Marcus, Apr 26 2016

MATHEMATICA

nmax=120; 27*8^Range[0, nmax]

PROG

(PARI) a(n) = 27*8^n; \\ Michel Marcus, Apr 27 2016

CROSSREFS

Cf. A001018, A002063.

Sequence in context: A224013 A059827 A117688 * A107054 A160441 A222994

Adjacent sequences: A272339 A272340 A272341 * A272343 A272344 A272345

KEYWORD

nonn,easy

AUTHOR

Andres Cicuttin, Apr 26 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 6 20:02 EST 2023. Contains 360111 sequences. (Running on oeis4.)