|
|
|
|
27, 216, 1728, 13824, 110592, 884736, 7077888, 56623104, 452984832, 3623878656, 28991029248, 231928233984, 1855425871872, 14843406974976, 118747255799808, 949978046398464, 7599824371187712, 60798594969501696
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
a(n) are cubes that can be expressed as sum of exactly four distinct powers of two: a(n)=2^3n + 2^(3n+1) + 2^(3n+3) + 2^(3n+4). For example a(0) = 2^0 + 2^1 + 2^3 + 2^4 = 1 + 2 + 8 + 16 = 27. It is conjectured the a(n) are the only cubes that can be expressed as sum of exactly four distinct nonnegative powers of two (tested on cubes up to (10^7)^3).
|
|
LINKS
|
Table of n, a(n) for n=0..17.
|
|
FORMULA
|
a(n) = 27*8^n = 2^3n + 2^(3n+1) + 2^(3n+3) + 2^(3n+4).
a(n) = 8*a(n-1), n>0; a(0)=27.
G.f.: 27/(1-8*x).
E.g.f.: 27*exp(8*x).
a(n) = 27*A001018(n). - Michel Marcus, Apr 26 2016
|
|
MATHEMATICA
|
nmax=120; 27*8^Range[0, nmax]
|
|
PROG
|
(PARI) a(n) = 27*8^n; \\ Michel Marcus, Apr 27 2016
|
|
CROSSREFS
|
Cf. A001018, A002063.
Sequence in context: A224013 A059827 A117688 * A107054 A160441 A222994
Adjacent sequences: A272339 A272340 A272341 * A272343 A272344 A272345
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Andres Cicuttin, Apr 26 2016
|
|
STATUS
|
approved
|
|
|
|