login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 27*8^n.
0

%I #19 Jun 29 2023 11:26:13

%S 27,216,1728,13824,110592,884736,7077888,56623104,452984832,

%T 3623878656,28991029248,231928233984,1855425871872,14843406974976,

%U 118747255799808,949978046398464,7599824371187712,60798594969501696

%N a(n) = 27*8^n.

%C a(n) are cubes that can be expressed as sum of exactly four distinct powers of two: a(n)=2^3n + 2^(3n+1) + 2^(3n+3) + 2^(3n+4). For example a(0) = 2^0 + 2^1 + 2^3 + 2^4 = 1 + 2 + 8 + 16 = 27. It is conjectured the a(n) are the only cubes that can be expressed as sum of exactly four distinct nonnegative powers of two (tested on cubes up to (10^7)^3).

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (8).

%F a(n) = 27*8^n = 2^3n + 2^(3n+1) + 2^(3n+3) + 2^(3n+4).

%F a(n) = 8*a(n-1), n>0; a(0)=27.

%F G.f.: 27/(1-8*x).

%F E.g.f.: 27*exp(8*x).

%F a(n) = 27*A001018(n). - _Michel Marcus_, Apr 26 2016

%t nmax=120; 27*8^Range[0, nmax]

%o (PARI) a(n) = 27*8^n; \\ _Michel Marcus_, Apr 27 2016

%Y Cf. A001018, A002063.

%K nonn,easy

%O 0,1

%A _Andres Cicuttin_, Apr 26 2016