login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A030017 a(1) = 1, a(n+1) = Sum_{k = 1..n} p(k)*a(n+1-k), where p(k) is the k-th prime. 15
1, 2, 7, 25, 88, 311, 1095, 3858, 13591, 47881, 168688, 594289, 2093693, 7376120, 25986209, 91549913, 322532092, 1136286727, 4003159847, 14103208628, 49685873471, 175044281583, 616684348614, 2172590743211, 7654078700221, 26965465508072, 94999850216565 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Apply "INVERT" transform to primes.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from T. D. Noe)

N. J. A. Sloane, Transforms

FORMULA

INVERT: a's from b's in 1+Sum a_i x^i = 1/(1-Sum b_i x^i).

G.f: (1-b(x)/(b(x)-1))*x, where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 13 2016

EXAMPLE

a(5) = 25*2 +7*3 +2*5 + 1*7 = 88.

MAPLE

a:= proc(n) option remember; `if`(n=1, 1,

      add(a(n-i)*ithprime(i), i=1..n-1))

    end:

seq(a(n), n=1..29);  # Alois P. Heinz, Feb 10 2021

MATHEMATICA

CoefficientList[ Series[ 1/(1 - Sum[ Prime[ n ]*x^n, {n, 1, 25} ] ), {x, 0, 25} ], x ]

(* Second program: *)

a[1] = 1; a[m_] := a[m] = Sum[Prime@ k  a[m - k], {k, m - 1}]; Table[a@ n, {n, 25}] (* Michael De Vlieger, Dec 13 2016 *)

CROSSREFS

Row sums of A340991(n-1).

Cf. A000040.

Sequence in context: A169651 A289446 A289598 * A131430 A007484 A070859

Adjacent sequences:  A030014 A030015 A030016 * A030018 A030019 A030020

KEYWORD

easy,nonn,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 05:13 EST 2022. Contains 350378 sequences. (Running on oeis4.)