login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, a(n+1) = Sum_{k = 1..n} p(k)*a(n+1-k), where p(k) is the k-th prime.
16

%I #22 Feb 10 2021 14:13:28

%S 1,2,7,25,88,311,1095,3858,13591,47881,168688,594289,2093693,7376120,

%T 25986209,91549913,322532092,1136286727,4003159847,14103208628,

%U 49685873471,175044281583,616684348614,2172590743211,7654078700221,26965465508072,94999850216565

%N a(1) = 1, a(n+1) = Sum_{k = 1..n} p(k)*a(n+1-k), where p(k) is the k-th prime.

%C Apply "INVERT" transform to primes.

%H Alois P. Heinz, <a href="/A030017/b030017.txt">Table of n, a(n) for n = 1..1000</a> (first 200 terms from T. D. Noe)

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%F INVERT: a's from b's in 1+Sum a_i x^i = 1/(1-Sum b_i x^i).

%F G.f: (1-b(x)/(b(x)-1))*x, where b(x) is the g.f. of A000040. - _Mario C. Enriquez_, Dec 13 2016

%e a(5) = 25*2 +7*3 +2*5 + 1*7 = 88.

%p a:= proc(n) option remember; `if`(n=1, 1,

%p add(a(n-i)*ithprime(i), i=1..n-1))

%p end:

%p seq(a(n), n=1..29); # _Alois P. Heinz_, Feb 10 2021

%t CoefficientList[ Series[ 1/(1 - Sum[ Prime[ n ]*x^n, {n, 1, 25} ] ), {x, 0, 25} ], x ]

%t (* Second program: *)

%t a[1] = 1; a[m_] := a[m] = Sum[Prime@ k a[m - k], {k, m - 1}]; Table[a@ n, {n, 25}] (* _Michael De Vlieger_, Dec 13 2016 *)

%Y Row sums of A340991(n-1).

%Y Cf. A000040.

%K easy,nonn,nice

%O 1,2

%A _N. J. A. Sloane_