login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A300630 Positive numbers k without two consecutive ones in the binary representation of 1/k. 5
1, 2, 3, 4, 6, 7, 8, 12, 14, 15, 16, 24, 28, 30, 31, 32, 48, 51, 56, 60, 62, 63, 64, 96, 102, 112, 120, 124, 126, 127, 128, 192, 195, 204, 224, 240, 248, 252, 254, 255, 256, 384, 390, 399, 408, 448, 451, 455, 480, 496, 504, 508, 510, 511, 512, 768, 771, 775 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently, these are the numbers k such that A300655(k) = 1.

Equivalently, these are the numbers k such that A300653(k, 3) > 3.

If n belongs to this sequence then 2*n belongs to this sequence.

This sequence has similarities with the Fibbinary numbers (A003714); here 1/k has no two consecutive ones in binary, there k has no two consecutive ones in binary.

For any odd term k, there is at least one positive Fibbinary number, say f, such that k * f belongs to A000225.

Apparently, the only Fibbinary numbers that belong to this sequence are the powers of 2 (A000079).

See A300669 for the complementary sequence.

Includes 2^k-1 for all k>=1. - Robert Israel, Jun 27 2018

LINKS

Robert Israel, Table of n, a(n) for n = 1..629

EXAMPLE

The first terms, alongside the binary representation of 1/a(n), are:

  n   a(n)    bin(1/a(n)) with repeating digits in parentheses

  --  ----    ------------------------------------------------

   1     1    1.(0)

   2     2    0.1(0)

   3     3    0.(01)

   4     4    0.01(0)

   5     6    0.0(01)

   6     7    0.(001)

   7     8    0.001(0)

   8    12    0.00(01)

   9    14    0.0(001)

  10    15    0.(0001)

  11    16    0.0001(0)

  12    24    0.000(01)

  13    28    0.00(001)

  14    30    0.0(0001)

  15    31    0.(00001)

  16    32    0.00001(0)

  17    48    0.0000(01)

  18    51    0.(00000101)

  19    56    0.000(001)

  20    60    0.00(0001)

MAPLE

filter:= proc(n) local m, d, r;

  m:= n/2^padic:-ordp(n, 2);

  d:= numtheory:-order(2, m);

  r:=(2^d-1)/m;

  Bits:-Or(r, 2*r)=3*r

end proc:

select(filter, [$1..1000]); # Robert Israel, Jun 27 2018

PROG

(PARI) is(n) = my (f=1/max(2, n), s=Set()); while (!setsearch(s, f), if (floor(f*4)==3, return (0), s=setunion(s, Set(f)); f=frac(f*2))); return (1)

CROSSREFS

Cf. A000079, A000225, A003714, A300653, A300655, A300669.

Sequence in context: A328607 A257250 A258209 * A077436 A277704 A082752

Adjacent sequences:  A300627 A300628 A300629 * A300631 A300632 A300633

KEYWORD

nonn,base

AUTHOR

Rémy Sigrist, Mar 10 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 04:16 EST 2020. Contains 331168 sequences. (Running on oeis4.)