login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344448
Square array read by antidiagonals upwards: T(n,k) for integer k >= 0 is the n-th prime p such that p^(2*3^k) + p^(3^k) + 1 is prime.
2
2, 3, 2, 5, 3, 2, 17, 11, 11, 191, 41, 191, 263, 311, 4457, 59, 269, 557, 557, 5867, 3803, 71, 383, 761, 659, 7001, 13859, 1889, 89, 509, 797, 887, 7019, 22961, 16829, 17, 101, 809, 863, 1607, 7541, 31223, 62549, 69677, 113921, 131, 827, 977, 2309, 8609, 44351, 67103, 102647, 176459, 24071
OFFSET
1,1
COMMENTS
T(n,k)^(3^k), for all n >= 1, k >= 0, arranged by increasing values, is A342690. It is conjectured that all columns are infinite. If 3^k was replaced by k in the definition, all additional columns would be empty, as x^(2*k) + x^k + 1 is reducible if k has prime factors other than 3. For checking the property, Pocklington-Lehmer type primality tests seem particularly effective, as n-1 always has a large smooth factor p^(3^k), cf. the paper of Brillhart, Lehmer and Selfridge (1975), Theorem 5.
This array describes the essence of A342690 and A342691 in much more terse form. T(1, 8) = 113921 matches the 33177-digit value q = 113921^3^8 in A342690 and the 66353-digit prime q^2+q+1 in A342691.
LINKS
J. Brillhart, D. H. Lehmer and J. L. Selfridge, New primality criteria and factorizations of 2^m+-1, Math. Compl. 29 (1975) 620-647.
EXAMPLE
Array begins:
===============================================================
n\k | 0 1 2 3 4 5 6 7 8 9
----+----------------------------------------------------------
1 | 2 2 2 191 4457 3803 1889 17 113921 24071
2 | 3 3 11 311 5867 13859 16829 69677 176459 ...
3 | 5 11 263 557 7001 22961 62549 102647 ...
4 | 17 191 557 659 7019 31223 67103 164963 ...
5 | 41 269 761 887 7541 44351 181931 170669 ...
6 | 59 383 797 1607 8609 45737 188333 207923 ...
7 | 71 509 863 2309 8627 61751 205433 235679 ...
8 | 89 809 977 2621 21773 63377 210407 342833 ...
9 | 101 827 1091 2687 22871 79481 219761 459209 ...
PROG
(PARI) N=5; K=2; m=matrix(N, K+1); for(k=0, K, i=0; forprime(p=2, , q=p^3^k; if(isprime(q^2+q+1, 1), i+=1; m[i, k+1]=p; if(i==N, break)))); m
CROSSREFS
The first column T(n,0) is A053182(n). The second column T(n,1) is A066100(n).
Sequence in context: A064886 A029600 A169616 * A111076 A361624 A162398
KEYWORD
nonn,tabl
AUTHOR
Martin Becker, May 19 2021
STATUS
approved