OFFSET
1,1
COMMENTS
T(n,k)^(3^k), for all n >= 1, k >= 0, arranged by increasing values, is A342690. It is conjectured that all columns are infinite. If 3^k was replaced by k in the definition, all additional columns would be empty, as x^(2*k) + x^k + 1 is reducible if k has prime factors other than 3. For checking the property, Pocklington-Lehmer type primality tests seem particularly effective, as n-1 always has a large smooth factor p^(3^k), cf. the paper of Brillhart, Lehmer and Selfridge (1975), Theorem 5.
LINKS
J. Brillhart, D. H. Lehmer and J. L. Selfridge, New primality criteria and factorizations of 2^m+-1, Math. Compl. 29 (1975) 620-647.
EXAMPLE
Array begins:
===============================================================
n\k | 0 1 2 3 4 5 6 7 8 9
----+----------------------------------------------------------
1 | 2 2 2 191 4457 3803 1889 17 113921 24071
2 | 3 3 11 311 5867 13859 16829 69677 176459 ...
3 | 5 11 263 557 7001 22961 62549 102647 ...
4 | 17 191 557 659 7019 31223 67103 164963 ...
5 | 41 269 761 887 7541 44351 181931 170669 ...
6 | 59 383 797 1607 8609 45737 188333 207923 ...
7 | 71 509 863 2309 8627 61751 205433 235679 ...
8 | 89 809 977 2621 21773 63377 210407 342833 ...
9 | 101 827 1091 2687 22871 79481 219761 459209 ...
PROG
(PARI) N=5; K=2; m=matrix(N, K+1); for(k=0, K, i=0; forprime(p=2, , q=p^3^k; if(isprime(q^2+q+1, 1), i+=1; m[i, k+1]=p; if(i==N, break)))); m
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Martin Becker, May 19 2021
STATUS
approved