login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A344445
Number of cycle-up-down permutations of [2n] having n cycles.
3
1, 1, 7, 105, 2345, 69405, 2559667, 113073961, 5820788545, 342176336073, 22616620648895, 1660292619682697, 134029227728536985, 11800452870718122325, 1125324001129006580475, 115551341953019187183225, 12711056625162235880359425, 1491325482312555276046069905
OFFSET
0,3
COMMENTS
For the definition of cycle-up-down permutations see A186366.
LINKS
Wikipedia, Permutation
FORMULA
a(n) = (2n)! * [x^(2n) y^n] 1/(1-sin(x))^y.
a(n) = A186366(2n,n).
a(n) ~ c * d^n * (n-1)!, where d = 7.3270710411718682766548233722838416956334898839746535623751... and c = 0.14278148012337362269164226210064788025688590260058738... - Vaclav Kotesovec, May 22 2021
EXAMPLE
a(2) = 7: (1)(243), (143)(2), (142)(3), (132)(4), (12)(34), (13)(24), (14)(23).
MAPLE
b:= proc(u, o) option remember; `if`(u+o=0, 1,
add(b(o-1+j, u-j), j=1..u))
end:
g:= proc(n) option remember; expand(`if`(n=0, 1,
add(g(n-j)*binomial(n-1, j-1)*x*b(j-1, 0), j=1..n)))
end:
a:= n-> coeff(g(2*n), x, n):
seq(a(n), n=0..18);
MATHEMATICA
Join[{1}, Table[Sum[2^(2*n - 2*j + 1) * StirlingS1[2*j, n] * Sum[(-1)^k * k^(2*n) / ((j+k)!*(j-k)!), {k, 0, j}], {j, Floor[n/2], n}], {n, 1, 20}]] (* Vaclav Kotesovec, May 22 2021 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 19 2021
STATUS
approved