login
A111076
Smallest positive number of maximal order mod n.
10
1, 1, 2, 3, 2, 5, 3, 3, 2, 3, 2, 5, 2, 3, 2, 3, 3, 5, 2, 3, 2, 7, 5, 5, 2, 7, 2, 3, 2, 7, 3, 3, 2, 3, 2, 5, 2, 3, 2, 3, 6, 5, 3, 3, 2, 5, 5, 5, 3, 3, 5, 7, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 7, 5, 5, 5, 2, 3, 2, 7, 3, 3, 2, 7, 2, 5, 3, 3, 2, 3, 3, 7, 2, 3, 11, 5, 2, 5, 5, 3, 2, 3
OFFSET
1,3
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = A229708(n) if and only if a(n) is prime. - Jonathan Sondow, May 17 2017
EXAMPLE
a(6)=5 because order of 1 is 1 and 2 through 4 are not relatively prime to 6, but 5 has order 2, which is the maximum possible.
MATHEMATICA
Table[Min[
Select[Range[n],
CoprimeQ[#, n] &&
MultiplicativeOrder[#, n] == CarmichaelLambda[n] &]], {n, 1, 100}]
(* Geoffrey Critzer, Jan 04 2015 *)
PROG
(PARI) a(n)=if(n==1, return(1)); if(n<5, return(n-1)); my(o=lcm(znstar(n)[2]), k=1); while(gcd(k++, n)>1 || znorder(Mod(k, n))<o, ); k \\ Charles R Greathouse IV, Jul 31 2013
CROSSREFS
Cf. A002322 (orders); same as A046145 for n with primitive roots; see also A001918 (for primes), A229708.
Sequence in context: A029600 A169616 A344448 * A361624 A162398 A131470
KEYWORD
easy,nonn
AUTHOR
STATUS
approved