login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111075 a(n) = F(n) * Sum_{k|n} 1/F(k), where F(k) is the k-th Fibonacci number. 5
1, 2, 3, 7, 6, 21, 14, 50, 52, 122, 90, 427, 234, 784, 1038, 2351, 1598, 6860, 4182, 17262, 17262, 35622, 28658, 139703, 90031, 243308, 300405, 766850, 514230, 2367006, 1346270, 5188658, 5326470, 11409346, 11782764, 44717548, 24157818 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) = a(n+1) for n = 20, but for no other n < 25000. - Klaus Brockhaus, Oct 11 2005

If k|n then F(k)|F(n). Therefore A111075(n) = F(n) * sum{k|n} 1/F(k) = sum{k|n} F(n)/F(k) is a sum of integers. - Max Alekseyev, Oct 22 2005

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..4785

FORMULA

G.f.: Sum_{n>=1} x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n). [Paul D. Hanna, Jan 09 2012]

EXAMPLE

a(6) = F(6) sum{k|6} 1/F(k) = F(6) * (1/F(1) + 1/F(2) + 1/F(3) + 1/F(6)) = 8 * (1/1 + 1/1 + 1/2 + 1/8) = 21.

MAPLE

with(combinat): with(numtheory): a:=proc(n) local div: div:=divisors(n): fibonacci(n)*sum(1/fibonacci(div[j]), j=1..tau(n)) end: seq(a(n), n=1..40); # Emeric Deutsch, Oct 11 2005

# second Maple program:

a:= n-> (F-> F(n)*add(1/F(d), d=numtheory[divisors(n)))(

         combinat[fibonacci]):

seq(a(n), n=1..42);  # Alois P. Heinz, Aug 20 2019

MATHEMATICA

f[n_] := Fibonacci[n]*Plus @@ (1/Fibonacci /@ Divisors[n]); Table[ f[n], {n, 37}] (* Robert G. Wilson v, Oct 11 2005 *)

PROG

(PARI) {for(n=1, 37, d=divisors(n); print1(fibonacci(n)*sum(j=1, length(d), 1/fibonacci(d[j])), ", "))}

(PARI) {a(n)=fibonacci(n) * sumdiv(n, d, 1/fibonacci(d))} /* Paul D. Hanna, Oct 11 2005 */

(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

{a(n)=polcoeff(sum(m=1, n, x^m/(1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))), n)} /* Paul D. Hanna, Oct 11 2005 */

CROSSREFS

Cf. A000045, A007435, A111159, A000204 (Lucas), A203318.

Sequence in context: A187015 A245467 A070964 * A011372 A104955 A011161

Adjacent sequences:  A111072 A111073 A111074 * A111076 A111077 A111078

KEYWORD

nonn

AUTHOR

Leroy Quet, Oct 10 2005

EXTENSIONS

More terms from Robert G. Wilson v, Emeric Deutsch, Paul D. Hanna and Klaus Brockhaus, Oct 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 18 01:05 EST 2020. Contains 330995 sequences. (Running on oeis4.)