login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111075 a(n) = F(n) * Sum_{k|n} 1/F(k), where F(k) is the k-th Fibonacci number. 5
1, 2, 3, 7, 6, 21, 14, 50, 52, 122, 90, 427, 234, 784, 1038, 2351, 1598, 6860, 4182, 17262, 17262, 35622, 28658, 139703, 90031, 243308, 300405, 766850, 514230, 2367006, 1346270, 5188658, 5326470, 11409346, 11782764, 44717548, 24157818 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) = a(n+1) for n = 20, but for no other n < 25000. - Klaus Brockhaus, Oct 11 2005

If k|n then F(k)|F(n). Therefore A111075(n) = F(n) * sum{k|n} 1/F(k) = sum{k|n} F(n)/F(k) is a sum of integers. - Max Alekseyev, Oct 22 2005

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..4785

FORMULA

G.f.: Sum_{n>=1} x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) where Lucas(n) = A000204(n). [Paul D. Hanna, Jan 09 2012]

EXAMPLE

a(6) = F(6) sum{k|6} 1/F(k) = F(6) * (1/F(1) + 1/F(2) + 1/F(3) + 1/F(6)) = 8 * (1/1 + 1/1 + 1/2 + 1/8) = 21.

MAPLE

with(combinat): with(numtheory): a:=proc(n) local div: div:=divisors(n): fibonacci(n)*sum(1/fibonacci(div[j]), j=1..tau(n)) end: seq(a(n), n=1..40); # Emeric Deutsch, Oct 11 2005

# second Maple program:

a:= n-> (F-> F(n)*add(1/F(d), d=numtheory[divisors(n)))(

         combinat[fibonacci]):

seq(a(n), n=1..42);  # Alois P. Heinz, Aug 20 2019

MATHEMATICA

f[n_] := Fibonacci[n]*Plus @@ (1/Fibonacci /@ Divisors[n]); Table[ f[n], {n, 37}] (* Robert G. Wilson v, Oct 11 2005 *)

PROG

(PARI) {for(n=1, 37, d=divisors(n); print1(fibonacci(n)*sum(j=1, length(d), 1/fibonacci(d[j])), ", "))}

(PARI) {a(n)=fibonacci(n) * sumdiv(n, d, 1/fibonacci(d))} /* Paul D. Hanna, Oct 11 2005 */

(PARI) {Lucas(n)=fibonacci(n-1)+fibonacci(n+1)}

{a(n)=polcoeff(sum(m=1, n, x^m/(1 - Lucas(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))), n)} /* Paul D. Hanna, Oct 11 2005 */

CROSSREFS

Cf. A000045, A007435, A111159, A000204 (Lucas), A203318.

Sequence in context: A187015 A245467 A070964 * A011372 A104955 A011161

Adjacent sequences:  A111072 A111073 A111074 * A111076 A111077 A111078

KEYWORD

nonn

AUTHOR

Leroy Quet, Oct 10 2005

EXTENSIONS

More terms from Robert G. Wilson v, Emeric Deutsch, Paul D. Hanna and Klaus Brockhaus, Oct 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 11:56 EST 2021. Contains 349557 sequences. (Running on oeis4.)