OFFSET
1,1
COMMENTS
Original name: "Primes p such that the sum of the cubes of the divisors of p^2 is prime."
Primes p such that sigma_3(p^2) is prime.
It appears that squares of these primes give A063783, those numbers whose sum of cubes of divisors is prime.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
Paolo Santonastaso and Ferdinando Zullo, Linearized trinomials with maximum kernel, Journal of Pure and Applied Algebra, Vol. 226, No. 3 (2022), 106842; arXiv preprint, arXiv:2012.14861 [math.NT], 2020-2021.
FORMULA
a(n) = sqrt(A063783(n)). - Amiram Eldar, Aug 16 2024
EXAMPLE
p=11: p^2=121, cubes of divisors of p^2 = {p^6, p^3, 1}, sigma_3(p^2) = p^6 + p^3 + 1 = 1771561 + 1331 + 1 = 1772893 = q, a prime.
MATHEMATICA
Select[Prime@ Range@ 1200, PrimeQ@ DivisorSigma[3, #^2] &] (* Michael De Vlieger, Jul 16 2017 *)
PROG
(PARI) { n=0; for (m=1, 10^9, p=prime(m); if (isprime(sigma(p^2, 3)), write("b066100.txt", n++, " ", p); if (n==1000, return)) ) } \\ Harry J. Smith, Nov 13 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Dec 04 2001
EXTENSIONS
Name replaced with simpler description offered in an Oct 10 2010 comment by James R. Buddenhagen by Jon E. Schoenfield, Jul 17 2017
STATUS
approved