login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063783
Numbers k such that the sum of the cubes of divisors of k is a prime.
6
4, 9, 121, 36481, 72361, 146689, 259081, 654481, 683929, 786769, 1985281, 2036329, 3193369, 3636649, 3798601, 4583881, 5031049, 5470921, 5555449, 6135529, 6713281, 7284601, 7778521, 16589329, 20403289, 21557449, 22915369, 26739241, 27426169, 30261001, 30591961
OFFSET
1,1
COMMENTS
Solutions to sigma_3(x) = prime.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
FORMULA
a(n) = A066100(n)^2. - Amiram Eldar, Aug 16 2024
EXAMPLE
All these terms are squares of primes {2, 3, 11, 191, 269, 383, 509, 809, 827, 887, 1409, 1427, 1787, 1907, 1949, 2141, 2243, 2339, 2357, 2477, 2591, 2699, 2789, ...}, so their sigma_3(p^2) = p^6 + p^3 + 1 has polynomial of degree 6.
sigma_3(9) = 1 + 27 + 729 = 757 is a prime.
MATHEMATICA
Select[Prime[Range[500]]^2, PrimeQ@ DivisorSigma[3, #] &] (* Michael De Vlieger, Jul 16 2017 *)
PROG
(PARI) { n=0; p=0; for (m=1, 10^9, p=nextprime(p+1); if(isprime(p^6 + p^3 + 1), write("b063783.txt", n++, " ", p^2); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 31 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 17 2001
STATUS
approved