Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 16 2024 19:06:56
%S 4,9,121,36481,72361,146689,259081,654481,683929,786769,1985281,
%T 2036329,3193369,3636649,3798601,4583881,5031049,5470921,5555449,
%U 6135529,6713281,7284601,7778521,16589329,20403289,21557449,22915369,26739241,27426169,30261001,30591961
%N Numbers k such that the sum of the cubes of divisors of k is a prime.
%C Solutions to sigma_3(x) = prime.
%H Amiram Eldar, <a href="/A063783/b063783.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Harry J. Smith)
%F a(n) = A066100(n)^2. - _Amiram Eldar_, Aug 16 2024
%e All these terms are squares of primes {2, 3, 11, 191, 269, 383, 509, 809, 827, 887, 1409, 1427, 1787, 1907, 1949, 2141, 2243, 2339, 2357, 2477, 2591, 2699, 2789, ...}, so their sigma_3(p^2) = p^6 + p^3 + 1 has polynomial of degree 6.
%e sigma_3(9) = 1 + 27 + 729 = 757 is a prime.
%t Select[Prime[Range[500]]^2, PrimeQ@ DivisorSigma[3, #] &] (* _Michael De Vlieger_, Jul 16 2017 *)
%o (PARI) { n=0; p=0; for (m=1, 10^9, p=nextprime(p+1); if(isprime(p^6 + p^3 + 1), write("b063783.txt", n++, " ", p^2); if (n==1000, break)) ) } \\ _Harry J. Smith_, Aug 31 2009
%Y Cf. A001158, A023194, A066100.
%K nonn
%O 1,1
%A _Labos Elemer_, Aug 17 2001