login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A363046
Number of partitions of n whose greatest part is a multiple of 4.
5
1, 0, 0, 0, 1, 1, 2, 3, 6, 7, 11, 14, 21, 26, 36, 45, 62, 76, 100, 124, 162, 199, 255, 314, 399, 488, 612, 748, 932, 1134, 1400, 1699, 2086, 2520, 3072, 3700, 4488, 5384, 6494, 7766, 9326, 11112, 13283, 15778, 18788, 22245, 26386, 31150, 36825, 43345, 51070, 59953
OFFSET
0,7
LINKS
FORMULA
G.f.: Sum_{k>=0} x^(4*k)/Product_{j=1..4*k} (1-x^j).
a(n) ~ A000041(n)/4. - Vaclav Kotesovec, May 21 2023
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
end:
a:= n-> add(b(n-4*i, min(n-4*i, 4*i)), i=0..n/4):
seq(a(n), n=0..60); # Alois P. Heinz, May 14 2023
PROG
(PARI) my(N=60, x='x+O('x^N)); Vec(sum(k=0, N, x^(4*k)/prod(j=1, 4*k, 1-x^j)))
CROSSREFS
Column 4 of A363048.
Sequence in context: A018468 A117115 A308733 * A049196 A284743 A256976
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 14 2023
STATUS
approved