login
A363045
Number of partitions of n whose greatest part is a multiple of 3.
8
1, 0, 0, 1, 1, 2, 4, 5, 7, 11, 14, 19, 27, 34, 45, 60, 77, 99, 130, 163, 208, 265, 333, 417, 526, 651, 810, 1004, 1237, 1519, 1869, 2278, 2780, 3382, 4101, 4958, 5995, 7210, 8669, 10398, 12444, 14859, 17730, 21086, 25057, 29718, 35186, 41584, 49100, 57842, 68075, 79991
OFFSET
0,6
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Seiichi Manyama)
FORMULA
G.f.: Sum_{k>=0} x^(3*k)/Product_{j=1..3*k} (1-x^j).
a(n) ~ exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n) * (1 - (1/Pi + Pi/72)*sqrt(3/(2*n))). - Vaclav Kotesovec, May 20 2023
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+b(n-i, min(n-i, i))))
end:
a:= n-> add(b(n-3*i, min(n-3*i, 3*i)), i=0..n/3):
seq(a(n), n=0..60); # Alois P. Heinz, May 14 2023
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1] + b[n - i, Min[n - i, i]]]];
a[n_] := Sum[b[n - 3*i, Min[n - 3*i, 3*i]], {i, 0, n/3}];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 23 2023, after Alois P. Heinz *)
PROG
(PARI) my(N=60, x='x+O('x^N)); Vec(sum(k=0, N, x^(3*k)/prod(j=1, 3*k, 1-x^j)))
CROSSREFS
Column 3 of A363048.
Sequence in context: A373030 A097697 A035620 * A022439 A050134 A010065
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 14 2023
STATUS
approved