login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038499
Number of partitions of n into a prime number of parts.
25
1, 0, 1, 2, 3, 5, 7, 10, 13, 18, 23, 31, 39, 52, 65, 84, 104, 134, 165, 210, 258, 324, 397, 495, 603, 747, 908, 1115, 1351, 1652, 1993, 2425, 2918, 3531, 4237, 5106, 6105, 7330, 8741, 10449, 12425, 14804, 17549, 20839, 24637, 29155, 34377, 40559, 47688, 56100
OFFSET
0,4
COMMENTS
Also, number of partitions of n whose largest part is a prime. E.g., for a(7) = 10 we have 6+1 = 5+2 = 4+3 = 5+1+1 = 4+2+1 = 3+3+1 = 3+2+2 = 3+1+1+1+1 = 2+2+1+1+1 = 1+1+1+1+1+1+1 and 7 = 5+2 = 5+1+1 = 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1. - Jon Perry Jul 06 2004
LINKS
FORMULA
G.f.: Sum_{n>=1}(x^prime(n)/Product_{i=1..prime(n)}(1-x^i)). - Vladeta Jovovic, Dec 25 2003
MAPLE
with(numtheory):
b:= proc(n, i) option remember; `if`(n<0, 0,
`if`(n=0 or i=1, 1, `if`(i<1, 0, b(n, i-1)+
`if`(i>n, 0, b(n-i, i)))))
end:
a:= n-> `if`(n=0, 1, add((p-> b(n-p, p)
)(ithprime(i)), i=1..pi(n))):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 24 2015
MATHEMATICA
nn=50; Table[CoefficientList[Series[x^p Product[1/(1-x^i), {i, 1, p}], {x, 0, nn}], x], {p, Table[Prime[m], {m, 1, PrimePi[nn]}]}]//Total (* Geoffrey Critzer, Mar 10 2013 *)
CROSSREFS
Sequence in context: A347549 A008628 A363067 * A118199 A239883 A332283
KEYWORD
nonn
AUTHOR
Christian G. Bower, Feb 15 1999
STATUS
approved