OFFSET
0,4
COMMENTS
Also, number of partitions of n whose largest part is a prime. E.g., for a(7) = 10 we have 6+1 = 5+2 = 4+3 = 5+1+1 = 4+2+1 = 3+3+1 = 3+2+2 = 3+1+1+1+1 = 2+2+1+1+1 = 1+1+1+1+1+1+1 and 7 = 5+2 = 5+1+1 = 3+3+1 = 3+2+2 = 3+2+1+1 = 3+1+1+1+1 = 2+2+2+1 = 2+2+1+1+1 = 2+1+1+1+1+1. - Jon Perry Jul 06 2004
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000
FORMULA
G.f.: Sum_{n>=1}(x^prime(n)/Product_{i=1..prime(n)}(1-x^i)). - Vladeta Jovovic, Dec 25 2003
MAPLE
with(numtheory):
b:= proc(n, i) option remember; `if`(n<0, 0,
`if`(n=0 or i=1, 1, `if`(i<1, 0, b(n, i-1)+
`if`(i>n, 0, b(n-i, i)))))
end:
a:= n-> `if`(n=0, 1, add((p-> b(n-p, p)
)(ithprime(i)), i=1..pi(n))):
seq(a(n), n=0..60); # Alois P. Heinz, Sep 24 2015
MATHEMATICA
nn=50; Table[CoefficientList[Series[x^p Product[1/(1-x^i), {i, 1, p}], {x, 0, nn}], x], {p, Table[Prime[m], {m, 1, PrimePi[nn]}]}]//Total (* Geoffrey Critzer, Mar 10 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Feb 15 1999
STATUS
approved