OFFSET
0,7
COMMENTS
a(n) = A118198(n,0).
From Gus Wiseman, May 21 2022: (Start)
Also the number of integer partitions of n > 0 that have a fixed point but whose conjugate does not, ranked by A353316. For example, the a(5) = 1 through a(10) = 10 partitions are:
11111 222 322 422 522 622
111111 2221 2222 3222 4222
1111111 3221 4221 5221
22211 22221 22222
11111111 32211 32221
222111 42211
111111111 222211
322111
2221111
1111111111
Partitions w/ a fixed point and a conjugate fixed point: A188674, reverse A325187, ranked by A353317.
Partitions w/o a fixed point or conjugate fixed point: A188674 (shifted).
(End)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1+sum(x^(k^2+k)/[(1-x^k)*product((1-x^i)^2, i=1..k-1)], k=1..infinity).
EXAMPLE
a(7) = 3 because we have [7] with size of Durfee square 1, [4,3] with size of Durfee square 2 and [3,3,1] with size of Durfee square 2.
MAPLE
g:=1+sum(x^(k^2+k)/(1-x^k)/product((1-x^i)^2, i=1..k-1), k=1..20): gser:=series(g, x=0, 60): seq(coeff(gser, x, n), n=0..54);
# second Maple program::
b:= proc(n, i) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
end:
a:= n-> add(add(b(k, d) *b(n-d*(d+1)-k, d-1),
k=0..n-d*(d+1)), d=0..floor(sqrt(n))):
seq(a(n), n=0..70); # Alois P. Heinz, Apr 09 2012
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum[Sum[b[k, d]*b[n-d*(d+1)-k, d-1], {k, 0, n-d*(d+1)}], {d, 0, Floor[Sqrt[n]]}]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, May 22 2015, after Alois P. Heinz *)
pq[y_]:=Length[Select[Range[Length[y]], #==y[[#]]&]];
conj[y_]:=If[Length[y]==0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
Table[Length[Select[IntegerPartitions[n], pq[#]>0&&pq[conj[#]]==0&]], {n, 0, 30}] (* a(0) = 0, Gus Wiseman, May 21 2022 *)
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Apr 14 2006
STATUS
approved