login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352874
Heinz numbers of integer partitions with positive crank, counted by A001522.
9
3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 33, 35, 37, 39, 41, 42, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 103, 105, 107, 109
OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The crank of a partition p is defined to be (i) the largest part of p if there is no 1 in p and (ii) (the number of parts larger than the number of 1's) minus (the number of 1's). [Definition copied from A342192; see A064428 for a different wording.]
FORMULA
Complement of A342192 in A352873.
EXAMPLE
The terms together with their prime indices begin:
3: (2) 30: (3,2,1) 54: (2,2,2,1)
5: (3) 31: (11) 55: (5,3)
7: (4) 33: (5,2) 57: (8,2)
9: (2,2) 35: (4,3) 59: (17)
11: (5) 37: (12) 61: (18)
13: (6) 39: (6,2) 63: (4,2,2)
15: (3,2) 41: (13) 65: (6,3)
17: (7) 42: (4,2,1) 66: (5,2,1)
18: (2,2,1) 43: (14) 67: (19)
19: (8) 45: (3,2,2) 69: (9,2)
21: (4,2) 47: (15) 70: (4,3,1)
23: (9) 49: (4,4) 71: (20)
25: (3,3) 50: (3,3,1) 73: (21)
27: (2,2,2) 51: (7,2) 75: (3,3,2)
29: (10) 53: (16) 77: (5,4)
MATHEMATICA
ck[y_]:=With[{w=Count[y, 1]}, If[w==0, Max@@y, Count[y, _?(#>w&)]-w]];
Select[Range[100], ck[Reverse[Flatten[Cases[FactorInteger[#], {p_, k_}:>Table[PrimePi[p], {k}]]]]]>0&]
CROSSREFS
* = unproved
These partitions are counted by A001522.
The case of zero crank is A342192, counted by A064410.
The case of nonnegative crank is A352873, counted by A064428.
A000700 counts self-conjugate partitions, ranked by A088902.
A001222 counts prime indices, distinct A001221.
*A001522 counts partitions with a fixed point, ranked by A352827.
A056239 adds up prime indices, row sums of A112798 and A296150.
*A064428 counts partitions without a fixed point, ranked by A352826.
A115720 and A115994 count partitions by their Durfee square.
A122111 represents partition conjugation using Heinz numbers.
A238395 counts reversed partitions with a fixed point, ranked by A352872.
Sequence in context: A160931 A160924 A063280 * A249123 A094042 A248196
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 09 2022
STATUS
approved