login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118197
Column 0 of the matrix log of triangle A117401, after term in row n is multiplied by n: a(n) = n*[log(A117401)](n,0), where A117401(n,k) = 2^(k*(n-k)).
3
0, 1, 0, -1, 4, -11, -186, 10823, -492536, 5125897, 10381552650, -6405856963573, 3302055158456332, 2338316177882689549, -30991279275364493410290, 224870687441604081662836751, -1045565401111374322223949545456, -50507259999091315834370754855632879
OFFSET
0,5
COMMENTS
The entire matrix log of triangle A117401 is determined by column 0 (this sequence): [log(A117401)](n,k) = a(n-k)*2^(k*(n-k))/(n-k) for n>k>=0.
LINKS
FORMULA
G.f.: x/(1-x)^2 = Sum_{n>=0} a(n)*x^n/(1-2^n*x).
By using the inverse transformation: a(n) = Sum_{k=0..n} k*A118196(n-k)*2^(k*(n-k)) for n>=0.
a(2^n) is divisible by 2^n.
G.f.: Sum_{n>=1} a(n)*x^n/[n*2^(n(n-1)/2)] = log(Sum_{n>=0} x^n/2^[n(n-1)/2]).
EXAMPLE
Column 0 of log(A117401) = [0, 1, 0, -1/3, 4/4, -11/5, -186/6, ...] and
consists of terms a(n)/n (n>0); these terms are integers at n = [0, 1, 2, 4, 6, 8, 10, 14, 16, 22, 26, 32, 34, 38, 46, 50, 58, 62, 64, 70, ...].
The g.f. is illustrated by:
x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 +... = x/(1-2*x) - 0*x^2/(1-4*x) - 1*x^3/(1-8*x) + 4*x^4/(1-16*x) - 11*x^5/(1-32*x) - 186*x^6/(1-64*x) + 10823*x^7/(1-128*x) + ...
Define g.f.: G(x) = Sum_{n>=1} a(n)*x^n/[n * 2^(n(n-1)/2)], then G(x) = x + 0*x^2/4 - x^3/24 + 4*x^4/256 - 11*x^5/5120 - 186*x^6/196608 + ... and exp(G(x)) = 1 + x + x^2/2 + x^3/8 + x^4/64 + x^5/1024 + x^6/32768 + ...
MATHEMATICA
A118196[n_]:= A118196[n]= If[n<2, (-1)^n, -Sum[2^(j*(n-j))*A118196[j], {j, 0, n-1}]];
a[n_]:= a[n]= -Sum[2^(j*(n-j))*j*A118196[j], {j, 0, n}];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 30 2021 *)
PROG
(PARI) {a(n) = local(T=matrix(n+1, n+1, r, c, if(r>=c, (2^(c-1))^(r-c))), L=sum(m=1, #T, -(T^0-T)^m/m)); return(n*L[n+1, 1])};
(PARI) {a(n)=n*2^(n*(n-1)/2)*polcoeff(log(sum(k=0, n, x^k/2^(k*(k-1)/2))+x*O(x^n)), n)}
(Sage)
@CachedFunction
def A118196(n): return (-1)^n if (n<2) else -sum(2^(j*(n-j))*A118196(j) for j in (0..n-1))
def a(n): return (-1)*sum(2^(j*(n-j))*j*A118196(j) for j in (0..n))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 30 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 15 2006, Oct 30 2007
STATUS
approved