login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118197 Column 0 of the matrix log of triangle A117401, after term in row n is multiplied by n: a(n) = n*[log(A117401)](n,0), where A117401(n,k) = 2^(k*(n-k)). 3
0, 1, 0, -1, 4, -11, -186, 10823, -492536, 5125897, 10381552650, -6405856963573, 3302055158456332, 2338316177882689549, -30991279275364493410290, 224870687441604081662836751, -1045565401111374322223949545456, -50507259999091315834370754855632879 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

The entire matrix log of triangle A117401 is determined by column 0 (this sequence): [log(A117401)](n,k) = a(n-k)*2^(k*(n-k))/(n-k) for n>k>=0.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..80

FORMULA

G.f.: x/(1-x)^2 = Sum_{n>=0} a(n)*x^n/(1-2^n*x).

By using the inverse transformation: a(n) = Sum_{k=0..n} k*A118196(n-k)*2^(k*(n-k)) for n>=0.

a(2^n) is divisible by 2^n.

G.f.: Sum_{n>=1} a(n)*x^n/[n*2^(n(n-1)/2)] = log(Sum_{n>=0} x^n/2^[n(n-1)/2]).

EXAMPLE

Column 0 of log(A117401) = [0, 1, 0, -1/3, 4/4, -11/5, -186/6, ...] and

consists of terms a(n)/n (n>0); these terms are integers at n = [0, 1, 2, 4, 6, 8, 10, 14, 16, 22, 26, 32, 34, 38, 46, 50, 58, 62, 64, 70, ...].

The g.f. is illustrated by:

x/(1-x)^2 = x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 +... = x/(1-2*x) - 0*x^2/(1-4*x) - 1*x^3/(1-8*x) + 4*x^4/(1-16*x) - 11*x^5/(1-32*x) - 186*x^6/(1-64*x) + 10823*x^7/(1-128*x) + ...

Define g.f.: G(x) = Sum_{n>=1} a(n)*x^n/[n * 2^(n(n-1)/2)], then G(x) = x + 0*x^2/4 - x^3/24 + 4*x^4/256 - 11*x^5/5120 - 186*x^6/196608 + ... and exp(G(x)) = 1 + x + x^2/2 + x^3/8 + x^4/64 + x^5/1024 + x^6/32768 + ...

MATHEMATICA

A118196[n_]:= A118196[n]= If[n<2, (-1)^n, -Sum[2^(j*(n-j))*A118196[j], {j, 0, n-1}]];

a[n_]:= a[n]= -Sum[2^(j*(n-j))*j*A118196[j], {j, 0, n}];

Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 30 2021 *)

PROG

(PARI) {a(n) = local(T=matrix(n+1, n+1, r, c, if(r>=c, (2^(c-1))^(r-c))), L=sum(m=1, #T, -(T^0-T)^m/m)); return(n*L[n+1, 1])};

(PARI) {a(n)=n*2^(n*(n-1)/2)*polcoeff(log(sum(k=0, n, x^k/2^(k*(k-1)/2))+x*O(x^n)), n)}

(Sage)

@CachedFunction

def A118196(n): return (-1)^n if (n<2) else -sum(2^(j*(n-j))*A118196(j) for j in (0..n-1))

def a(n): return (-1)*sum(2^(j*(n-j))*j*A118196(j) for j in (0..n))

[a(n) for n in (0..30)] # G. C. Greubel, Jun 30 2021

CROSSREFS

Cf. A117401, A118196, A134531.

Sequence in context: A089920 A303881 A305277 * A092658 A304888 A316572

Adjacent sequences:  A118194 A118195 A118196 * A118198 A118199 A118200

KEYWORD

sign

AUTHOR

Paul D. Hanna, Apr 15 2006, Oct 30 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 16:06 EDT 2021. Contains 348065 sequences. (Running on oeis4.)