login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n whose least part is a multiple of 4.
3

%I #17 May 21 2023 07:35:53

%S 0,0,0,1,0,0,0,2,1,1,1,3,2,3,3,7,6,8,9,13,13,17,19,28,30,38,43,56,62,

%T 76,87,110,124,151,173,211,241,289,332,399,456,539,620,733,838,983,

%U 1127,1322,1513,1761,2016,2343,2677,3096,3536,4083,4655,5355,6101,7005,7969,9124,10370,11856,13453,15340

%N Number of partitions of n whose least part is a multiple of 4.

%H Vaclav Kotesovec, <a href="/A363095/b363095.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=1} x^(4*k)/Product_{j>=4*k} (1-x^j).

%F a(n) ~ Pi^3 * exp(Pi*sqrt(2*n/3)) / (3 * 2^(5/2) * n^(5/2)) * (1 - (5*sqrt(6)/Pi + 169*Pi*sqrt(6)/144)/sqrt(n)). - _Vaclav Kotesovec_, May 21 2023

%t nmax = 60; Rest[CoefficientList[Series[Sum[x^(4*k)/QPochhammer[x^(4*k), x], {k, 1, nmax/4}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, May 20 2023 *)

%o (PARI) my(N=70, x='x+O('x^N)); concat([0, 0, 0], Vec(sum(k=1, N, x^(4*k)/prod(j=4*k, N, 1-x^j))))

%Y Cf. A026805, A363094, A363096.

%Y Cf. A363046.

%K nonn

%O 1,8

%A _Seiichi Manyama_, May 19 2023