login
A230265
Denominators of eta(2*n)/Pi^(2*n), where eta(n) is the Dirichlet eta function.
2
2, 12, 720, 30240, 1209600, 6842880, 1307674368000, 74724249600, 1524374691840000, 5109094217170944000, 802857662698291200000, 287777551824322560000, 1693824136731743669452800000, 186134520519971831808000000
OFFSET
0,1
COMMENTS
The first 5 terms of this sequence are the same as in A060055.
FORMULA
a(n) = A036280(n)*Pi^(2*n)/(zeta(2*n)*(1 - 2^(1-2*n))).
a(n) = denominator((-1)^(n+1)*BernoulliB(2*n)*(2^(2*n-1) - 1)/(2*n)!).
a(n) = 2*A036281(n).
PROG
(PARI) for(n=0, 7, print1(2*denominator(polcoeff(Ser(1/sin(x)), 2*n-1)), ", "));
CROSSREFS
Numerators give A036280.
Sequence in context: A173104 A141770 A363098 * A060055 A363234 A061149
KEYWORD
nonn,easy,frac
AUTHOR
STATUS
approved