The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A230263 Number of nonnegative integer solutions to the equation x^2 - 4*y^2 = n. 4
 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 1, 2, 0, 0, 2, 1, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 2, 2, 0, 0, 1, 2, 0, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 3, 0, 0, 2, 2, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,9 COMMENTS For (x, y) to be a solution to the more general equation x^2 - d^2*y^2 = n, it can be shown that n-f^2 must be divisible by 2*f*d, where f is a divisor of n not exceeding sqrt(n). Then y = (n-f^2)/(2*f*d) and x = d*y+f. LINKS Bruno Berselli, Table of n, a(n) for n = 1..1000 EXAMPLE a(9) = 2 because x^2 - 4*y^2 = 9 has two nonnegative integer solutions: (x,y) = (5,2) and (3,0). PROG (PARI) a(n) = sumdiv(n, f, f^2<=n && (n-f^2)%(4*f)==0); (MAGMA) d:=2; solutions:=func; [#solutions(n): n in [1..100]]; // Bruno Berselli, Oct 16 2013 CROSSREFS Cf. A034178, A230239, A230264. Sequence in context: A170957 A178725 A257402 * A139354 A124762 A258590 Adjacent sequences:  A230260 A230261 A230262 * A230264 A230265 A230266 KEYWORD nonn AUTHOR Colin Barker, Oct 14 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 17:49 EDT 2021. Contains 346428 sequences. (Running on oeis4.)