login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364331
G.f. satisfies A(x) = (1 + x*A(x)^2) * (1 + x*A(x)^5).
6
1, 2, 15, 163, 2070, 28698, 421015, 6425644, 100977137, 1622885389, 26551709946, 440744175801, 7404449354076, 125657625548824, 2150963575012295, 37094953102567208, 643904274979347286, 11241232087809137759, 197247501440314516840, 3476787208220672891388, 61533794803235280779261
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k) / (2*n+3*k+1).
x/(series_reversion(x*A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + ..., the g.f. of A215623. - Peter Bala, Sep 08 2024
MAPLE
A364331 := proc(n)
add( binomial(2*n+3*k+1, k) * binomial(2*n+3*k+1, n-k)/(2*n+3*k+1), k=0..n) ;
end proc:
seq(A364331(n), n=0..70); # R. J. Mathar, Jul 25 2023
PROG
(PARI) a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 18 2023
STATUS
approved