OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} binomial(2*n+3*k+1,k) * binomial(2*n+3*k+1,n-k) / (2*n+3*k+1).
x/(series_reversion(x*A(x)) = 1 + 2*x + 11*x^2 + 89*x^3 + 836*x^4 + ..., the g.f. of A215623. - Peter Bala, Sep 08 2024
MAPLE
A364331 := proc(n)
add( binomial(2*n+3*k+1, k) * binomial(2*n+3*k+1, n-k)/(2*n+3*k+1), k=0..n) ;
end proc:
seq(A364331(n), n=0..70); # R. J. Mathar, Jul 25 2023
PROG
(PARI) a(n) = sum(k=0, n, binomial(2*n+3*k+1, k)*binomial(2*n+3*k+1, n-k)/(2*n+3*k+1));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 18 2023
STATUS
approved