login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364332
a(n) = f(prime(n)), where f(2) = 0 and for an odd prime p, f(p) = max{f(q)+1: q ranges over all prime factors of p-1}.
3
0, 1, 1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 4, 3, 4, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 4, 2, 3, 3, 3, 2, 4, 3, 2, 3, 2, 4, 4, 4, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 3, 2, 2, 1, 4, 4, 2, 4, 3, 5, 3, 2, 3, 3, 4, 3, 3, 5, 4, 3, 5, 3, 3, 3, 4, 3, 3, 2, 2, 3, 3, 4, 2, 3, 3, 3, 3, 4, 3, 5, 4, 2, 3, 4, 3, 4, 3, 4
OFFSET
1,4
COMMENTS
This sequence is related to a problem about googology (see Zhihu).
There are three numbers named A, B and C, and initially A>1, and B=C=0.
Now take the following steps:
Step 1. Let B=B+1, C=C+1.
Step 2. Check if A is divisible by (B+1). If yes, go to Step 3; if no, go back to Step 1.
Step 3. Let A=A/(B+1)*B^C.
Step 4. Let B=0.
Step 5. If A=1, then stop, otherwise go back to Step 1.
This program will always stop. When the program stops, C will be a very large number.
When Step 3 reached, B+1 will be the smallest prime factor of A, and this factor is eliminated while some smaller factors; i.e., factors of B, are added.
The properties of this problem rely on the prime factors of A. A can be described by the ordinal: O(A) = n_(k-1)*omega^(l_(k-1)) + ... + n_2*omega^(l_2) + n_1*omega^(l_1) + n_0 where A = 2^(n_0) * 3^(n_1) * 5^(n_2) * p(k)^(n_(k-1)). Every operation will monotonically decrease the ordinal.
Note that the exponential of omega in each term is l_k instead of k, and this is because the correspondence between prime factors and powers of omega is more complicated than "p(k+1) to omega^k".
When B+1=2, the increase of C is only 1, then every prime factor 2 corresponds ordinal 1, or omega^0. This agrees with a(p)=0 when p=2 in this sequence.
When B+1=3, any number of exponential of 2 can be increased, then every prime factor 3 corresponds ordinal omega.
When B+1=5, only the power of 2 can be increased as well, then prime factor 5 also corresponds omega.
When B+1=7, any number of exponentials of 2 and 3 can be both increased, then the corresponding ordinal is (1+omega)*omega=omega*omega=omega^2.
The rule is, the power of omega for a given prime number p equals the maximum among those for prime factors of (p-1), plus one.
This sequence is similar to but different from A083647, the difference begins at the 52nd term; i.e. for p=239. That is because 238=2*7*17 and a(7)=3>2=a(17) although 7<17.
From Jianing Song, Apr 28 2024: (Start)
a(n) is one less than the maximum length of a sequence d_0 = prime(n), d_1, ..., d_m = 2 such that d_i is a prime factor of d_{i-1} - 1. For example, for n = 52 (then prime(n) = 239), we have a(n) = 3 since that a sequence with maximum length is 239, 7, 3, 2. It is clear that a(n) >= A083647(n), as the latter takes d_i to be largest prime factor of d_{i-1} - 1.
Conjecture: the smallest prime p such that f(p) = m (namely a(primepi(p)) = m)) is p = A082449(m). Verified for m <= 13. (End)
FORMULA
f(2) = 0 and f(p) = max{f(q):q is prime and q|(p-1)}+1 for p an odd prime. Then a(n) = f(prime(n)).
a(n) = 0 if and only if n = 1. a(n) = 1 if and only if prime(n) is a Fermat prime (A019434). a(n) = 2 if and only if prime(n) - 1 is a product of a power of 2 and a nonempty product of powers of Fermat primes. - Jianing Song, Apr 28 2024
EXAMPLE
For p=443, we have 442=2*13*17, and f(2)=0, f(13)=2, f(17)=1. The maximum among them is 2, so f(443)=3, or a(86)=3.
MATHEMATICA
Nest[Function[list,
Module[{p = Prime[Length[list] + 1]},
Append[list,
Max[(list[[PrimePi[First[#]]]]) & /@ FactorInteger[p - 1]] +
1]]], {0}, 110]
PROG
(PARI) a(n) = my(iteration = 0, v = [prime(n)], v_new); while(v!=[2], v_new = []; for(i=1, #v, v_new = concat(v_new, factor(v[i]-1)[, 1]~)); v = Set(v_new); iteration++); iteration \\ Jianing Song, Apr 28 2024
(PARI) A364332_first_N_terms(N) = my(v = vector(N), f); for(n=2, N, f = factor(prime(n)-1)[, 1]~; v[n] = vecmax(vector(#f, i, v[primepi(f[i])]))+1); v \\ Jianing Song, Apr 28 2024
CROSSREFS
Cf. A364334, A082449. Different from A083647.
Sequence in context: A162544 A209323 A083647 * A346389 A056691 A262982
KEYWORD
nonn
AUTHOR
Steven Lu, Jul 18 2023
STATUS
approved