login
A083647
For primes p: Number of steps to reach 2 when iterating f(p) = greatest prime divisor of p-1.
4
0, 1, 1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 4, 3, 4, 2, 3, 3, 2, 3, 3, 3, 2, 2, 2, 4, 2, 3, 3, 3, 2, 4, 3, 2, 3, 2, 4, 4, 4, 2, 3, 2, 3, 3, 3, 3, 4, 3, 4, 2, 2, 2, 1, 4, 4, 2, 4, 3, 5, 3, 2, 3, 3, 4, 3, 3, 5, 4, 3, 5, 3, 3, 3, 4, 3, 3, 2, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3, 5, 3, 2, 3, 4, 3, 4, 3, 4, 2, 3, 5, 4, 4, 3
OFFSET
1,4
COMMENTS
For smallest prime that requires n steps to reach 2 cf. A082449.
LINKS
EXAMPLE
59 is the 17th prime and takes four steps to reach 2 (59 -> 29 -> 7 -> 3 -> 2), so a(17) = 4.
MATHEMATICA
Table[Length[NestWhileList[FactorInteger[#-1][[-1, 1]]&, Prime[n], #!=2&]]-1, {n, 110}] (* Harvey P. Dale, Feb 27 2012 *)
PROG
(PARI) {forprime(p=2, 571, q=p; c=0; while(q>2, fac=factor(q-1); q=fac[matsize(fac)[1], 1]; c++); print1(c, ", "))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, May 01 2003
STATUS
approved