login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364330
G.f. satisfies A(x) = (1 + x^4) * (1 + x*A(x)^2).
3
1, 1, 2, 5, 15, 45, 142, 464, 1556, 5327, 18532, 65326, 232826, 837589, 3037472, 11092143, 40753626, 150541422, 558762382, 2082871613, 7794301294, 29269317708, 110263451242, 416595676681, 1578183767068, 5993326380378, 22812048907856, 87010994947971, 332531385362972
OFFSET
0,3
FORMULA
G.f.: A(x) = 2*(1 + x^4) / (1 + sqrt(1-4*x*(1 + x^4)^2)).
a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-8*k+1,k) * binomial(2*n-8*k+1,n-4*k) / (2*n-8*k+1).
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(n+1)*a(n-4) +6*(-2*n+9)*a(n-5) +6*(-2*n+17)*a(n-9) +2*(-2*n+25)*a(n-13)=0. - R. J. Mathar, Jul 25 2023
MAPLE
A364330 := proc(n)
add( binomial(2*n-8*k+1, k) * binomial(2*n-8*k+1, n-4*k)/(2*n-8*k+1), k=0..n/4) ;
end proc:
seq(A364330(n), n=0..80); # R. J. Mathar, Jul 25 2023
MATHEMATICA
nmax = 28; A[_] = 1;
Do[A[x_] = (1 + x^4)*(1 + x*A[x]^2) + O[x]^(nmax+1) // Normal, {nmax+1}];
CoefficientList[A[x], x] (* Jean-François Alcover, Mar 03 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(2*n-8*k+1, k)*binomial(2*n-8*k+1, n-4*k)/(2*n-8*k+1));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jul 18 2023
STATUS
approved