Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Mar 03 2024 09:50:26
%S 1,1,2,5,15,45,142,464,1556,5327,18532,65326,232826,837589,3037472,
%T 11092143,40753626,150541422,558762382,2082871613,7794301294,
%U 29269317708,110263451242,416595676681,1578183767068,5993326380378,22812048907856,87010994947971,332531385362972
%N G.f. satisfies A(x) = (1 + x^4) * (1 + x*A(x)^2).
%F G.f.: A(x) = 2*(1 + x^4) / (1 + sqrt(1-4*x*(1 + x^4)^2)).
%F a(n) = Sum_{k=0..floor(n/4)} binomial(2*n-8*k+1,k) * binomial(2*n-8*k+1,n-4*k) / (2*n-8*k+1).
%F D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(n+1)*a(n-4) +6*(-2*n+9)*a(n-5) +6*(-2*n+17)*a(n-9) +2*(-2*n+25)*a(n-13)=0. - _R. J. Mathar_, Jul 25 2023
%p A364330 := proc(n)
%p add( binomial(2*n-8*k+1,k) * binomial(2*n-8*k+1,n-4*k)/(2*n-8*k+1),k=0..n/4) ;
%p end proc:
%p seq(A364330(n),n=0..80); # _R. J. Mathar_, Jul 25 2023
%t nmax = 28; A[_] = 1;
%t Do[A[x_] = (1 + x^4)*(1 + x*A[x]^2) + O[x]^(nmax+1) // Normal, {nmax+1}];
%t CoefficientList[A[x], x] (* _Jean-François Alcover_, Mar 03 2024 *)
%o (PARI) a(n) = sum(k=0, n\4, binomial(2*n-8*k+1, k)*binomial(2*n-8*k+1, n-4*k)/(2*n-8*k+1));
%Y Cf. A073157, A215576, A364329.
%K nonn,easy
%O 0,3
%A _Seiichi Manyama_, Jul 18 2023