login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A071727
Expansion of (1+x^3*C)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
0
1, 2, 5, 15, 45, 141, 457, 1520, 5159, 17797, 62218, 219946, 784890, 2823666, 10229733, 37289210, 136665195, 503301525, 1861550310, 6912114330, 25755891510, 96279420870, 360961760250, 1356920443944, 5113523451462, 19314197605826, 73105593170132, 277253358421060
OFFSET
0,2
FORMULA
For n > 0, a(n) = 3*binomial(2*n-4,n-3)/n+2*binomial(2*n+1,n)/(n+2). - Tani Akinari, Nov 28 2024
MAPLE
a:= proc(n) option remember; `if`(n<3, 1+n^2,
2*(2*n-5)*(67*n^3-93*n^2-28*n+12)*a(n-1)/
((n+2)*(67*n^3-294*n^2+359*n-120)))
end:
seq(a(n), n=0..27); # Alois P. Heinz, Nov 28 2024
PROG
(Maxima) a(n):=if n=0 then 1 else 3*binomial(2*n-4, n-3)/n+2*binomial(2*n+1, n)/(n+2);
makelist(a(n), n, 0, 50); /* Tani Akinari, Nov 28 2024 */
CROSSREFS
Cf. A000108.
Sequence in context: A232208 A294502 A254534 * A148354 A364330 A151279
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 06 2002
STATUS
approved