login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1+x^3*C)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
0

%I #12 Nov 28 2024 11:05:35

%S 1,2,5,15,45,141,457,1520,5159,17797,62218,219946,784890,2823666,

%T 10229733,37289210,136665195,503301525,1861550310,6912114330,

%U 25755891510,96279420870,360961760250,1356920443944,5113523451462,19314197605826,73105593170132,277253358421060

%N Expansion of (1+x^3*C)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.

%F For n > 0, a(n) = 3*binomial(2*n-4,n-3)/n+2*binomial(2*n+1,n)/(n+2). - _Tani Akinari_, Nov 28 2024

%p a:= proc(n) option remember; `if`(n<3, 1+n^2,

%p 2*(2*n-5)*(67*n^3-93*n^2-28*n+12)*a(n-1)/

%p ((n+2)*(67*n^3-294*n^2+359*n-120)))

%p end:

%p seq(a(n), n=0..27); # _Alois P. Heinz_, Nov 28 2024

%o (Maxima) a(n):=if n=0 then 1 else 3*binomial(2*n-4,n-3)/n+2*binomial(2*n+1,n)/(n+2);

%o makelist(a(n),n,0,50); /* _Tani Akinari_, Nov 28 2024 */

%Y Cf. A000108.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Jun 06 2002