login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259608
G.f. A(x) satisfies: A(x) = Series_Reversion( x - x^2*A(x) - x*Integral 2*A(x) dx ).
1
1, 2, 15, 164, 2190, 33384, 561659, 10226376, 198975366, 4101249990, 88985266436, 2022670569000, 47986654728506, 1184722493746988, 30364559922967455, 806313807163378768, 22146014022165507644, 628220131284285896472, 18382404744008384580629, 554214116675011187495440
OFFSET
1,2
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Series_Reversion( x - Sum_{n>=1} (n+1)/n * a(n) * x^(2*n+1) ).
(2) A(x) = x + Sum_{n>=1} (n+1)/n * a(n) * A(x)^(2*n+1).
Let B(x) = Integral 2*A(x) dx, then
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (x*A(x) + B(x))^n * x^n / n!.
(4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (x*A(x) + B(x))^n * x^(n-1) / n! ).
a(n)/n = A259609(n) for n>=1.
EXAMPLE
G.f.: A(x) = x + 2*x^3 + 15*x^5 + 164*x^7 + 2190*x^9 + 33384*x^11 +...
Let B(x) = Integral 2*A(x) dx
B(x) = x^2 + x^4 + 5*x^6 + 41*x^8 + 438*x^10 + 5564*x^12 + 80237*x^14 + 1278297*x^16 + 22108374*x^18 +...+ A259609(n)*x^(2*n) +...
such that A(x - x^2*A(x) - x*B(x)) = x.
Also,
A(x) = x + (x*A(x) + B(x))*x + [d/dx (x*A(x) + B(x))^2*x^2]/2! + [d^2/dx^2 (x*A(x) + B(x))^3*x^3]/3! + [d^3/dx^3 (x*A(x) + B(x))^4*x^4]/4! + [d^4/dx^4 (x*A(x) + B(x))^5*x^5]/5! +...
Logarithmic series:
log(A(x)/x) = (x*A(x) + B(x)) + [d/dx (2*x*A(x) + B(x))^2*x]/2! + [d^2/dx^2 (2*x*A(x) + B(x))^3*x^2]/3! + [d^3/dx^3 (2*x*A(x) + B(x))^4*x^3]/4! + [d^4/dx^4 (2*x*A(x) + B(x))^5*x^4]/5! +...
PROG
(PARI) {a(n)=local(A=x); for(i=0, n, A = serreverse(x - x^2*A - x*intformal(2*A) +x*O(x^(2*n)))); polcoeff(A, 2*n-1)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A259609.
Sequence in context: A204679 A363564 A364331 * A317278 A140809 A153852
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2015
STATUS
approved