login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259609
G.f. A(x) satisfies: A'(x)/2 = Series_Reversion( x - x^2*A'(x) - 2*x*A(x) ).
1
1, 1, 5, 41, 438, 5564, 80237, 1278297, 22108374, 410124999, 8089569676, 168555880750, 3691281132962, 84623035267642, 2024303994864497, 50394612947711173, 1302706707186206332, 34901118404682549804, 967494986526757083191, 27710705833750559374772, 818986747695251513692537
OFFSET
2,3
FORMULA
a(n) = A259608(n)/n for n>=1.
EXAMPLE
G.f.: A(x) = x^2 + x^4 + 5*x^6 + 41*x^8 + 438*x^10 + 5564*x^12 + 80237*x^14 +...
where
A'(x)/2 = x + 2*x^3 + 15*x^5 + 164*x^7 + 2190*x^9 + 33384*x^11 + 561659*x^13 + 10226376*x^15 +...+ A259608(n)*x^(2*n-1) +...
PROG
(PARI) {a(n)=local(A=x); for(i=0, n, A = serreverse(x - x^2*A - x*intformal(2*A) +x*O(x^(2*n)))); polcoeff(A, 2*n-1)/n}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Cf. A259608.
Sequence in context: A081215 A218219 A140095 * A323213 A083073 A379879
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 01 2015
STATUS
approved