OFFSET
1,3
COMMENTS
Self-convolution yields A259611.
EXAMPLE
G.f. A(x) = x + x^2 + 6*x^3 + 58*x^4 + 720*x^5 + 10506*x^6 + 172284*x^7 +...
where
A(x)*A'(x) = x + 3*x^2 + 26*x^3 + 320*x^4 + 4776*x^5 + 81018*x^6 + 1510336*x^7 + 30328173*x^8 +...+ A259610(n)*x^n +...
also
A(x)^2 = x^2 + 2*x^3 + 13*x^4 + 128*x^5 + 1592*x^6 + 23148*x^7 + 377584*x^8 + 6739594*x^9 +...+ A259611(n)*x^n +...
PROG
(PARI) {a(n)=local(A=x^2); for(i=0, n, A = 2*intformal( serreverse(x - x*A' - A +x*O(x^n)))); polcoeff(sqrt(A), n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2015
STATUS
approved