login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259610
G.f. A(x) satisfies: A(x) = Series_Reversion( x - 2*x*A(x) - Integral 2*A(x) dx ).
3
1, 3, 26, 320, 4776, 81018, 1510336, 30328173, 647535770, 14569480376, 343234151688, 8425926474186, 214747018423616, 5665854689772960, 154393844206506248, 4337151982457354192, 125404753959532852236, 3727264826995512243092, 113749283318621304173840, 3560977119168952929308604
OFFSET
1,2
LINKS
FORMULA
G.f. A(x) satisfies:
(1) A(x) = Series_Reversion( x - Sum_{n>=1} 2*(n+2) * a(n) * x^(n+1)/(n+1) ).
(2) A(x) = x + Sum_{n>=1} 2*(n+2) * a(n) * A(x)^(n+1) / (n+1).
Let B(x) = Integral 2*A(x) dx, then
(3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (2*x*A(x) + B(x))^n / n!.
(4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (2*x*A(x) + B(x))^n / (n!*x) ).
a(n) = (n+1)*A259611(n+1)/2 for n>=1.
EXAMPLE
G.f. A(x) = x + 3*x^2 + 26*x^3 + 320*x^4 + 4776*x^5 + 81018*x^6 +...
such that
Series_Reversion(A(x)) = x - 3*x^2 - 8*x^3 - 65*x^4 - 768*x^5 - 11144*x^6 - 185184*x^7 - 3398256*x^8 - 67395940*x^9 +...+ -2*(n+2)/(n+1)*a(n)*x^(n+1) +...
Let B(x) = Integral 2*A(x) dx, an integer series that begins:
B(x) = x^2 + 2*x^3 + 13*x^4 + 128*x^5 + 1592*x^6 + 23148*x^7 + 377584*x^8 + 6739594*x^9 +...+ A259611(n)*x^n +...
then A(x - 2*x*A(x) - B(x)) = x.
Also,
A(x) = x + (2*x*A(x) + B(x)) + [d/dx (2*x*A(x) + B(x))^2]/2! + [d^2/dx^2 (2*x*A(x) + B(x))^3]/3! + [d^3/dx^3 (2*x*A(x) + B(x))^4]/4! + [d^4/dx^4 (2*x*A(x) + B(x))^5]/5! +...
Logarithmic series:
log(A(x)/x) = (2*x*A(x) + B(x))/x + [d/dx (2*x*A(x) + B(x))^2/x]/2! + [d^2/dx^2 (2*x*A(x) + B(x))^3/x]/3! + [d^3/dx^3 (2*x*A(x) + B(x))^4/x]/4! + [d^4/dx^4 (2*x*A(x) + B(x))^5/x]/5! +...
PROG
(PARI) {a(n)=local(A=x); for(i=0, n, A = serreverse(x - 2*x*A - intformal(2*A) +x*O(x^n))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x, B=x^2); for(i=1, n, B=intformal(2*A); A = x + sum(m=1, n, Dx(m-1, (2*x*A + B)^m/m!)) +O(x^(n+1))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x, B=x^2); for(i=1, n, B=intformal(2*A); A = x*exp(sum(m=1, n, Dx(m-1, (2*x*A + B)^m/(m!*x))) +O(x^(n+1)))); polcoeff(A, n)}
for(n=1, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A126738 A283298 A377652 * A326396 A109074 A357337
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 30 2015
STATUS
approved