login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357337
E.g.f. satisfies A(x) = log(1 + x) * exp(2 * A(x)).
3
0, 1, 3, 26, 334, 5964, 135228, 3729872, 121172560, 4532603904, 191869653120, 9067948437888, 473297792213376, 27039987154142208, 1678363256057198592, 112467293224249912320, 8092242817059530284032, 622253112192770288799744
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: -LambertW(-2 * log(1 + x))/2.
a(n) = Sum_{k=1..n} (2 * k)^(k-1) * Stirling1(n,k).
a(n) ~ n^(n-1) / (sqrt(2) * (exp(exp(-1)/2) - 1)^(n - 1/2) * exp(n + exp(-1)/4 - 1/2)). - Vaclav Kotesovec, Oct 04 2022
E.g.f.: Series_Reversion( exp(x * exp(-2*x)) - 1 ). - Seiichi Manyama, Sep 10 2024
MATHEMATICA
nmax = 20; A[_] = 0;
Do[A[x_] = Log[1 + x]*Exp[2*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 05 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-2*log(1+x))/2)))
(PARI) a(n) = sum(k=1, n, (2*k)^(k-1)*stirling(n, k, 1));
CROSSREFS
Cf. A349504.
Sequence in context: A259610 A326396 A109074 * A227020 A119293 A339298
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 24 2022
STATUS
approved