login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A259607
G.f. satisfies: A(x) = 1+x + x^2 * A'(x)^2 / A(x)^2.
2
1, 1, 1, 2, 9, 66, 646, 7760, 109585, 1771810, 32211854, 649833996, 14399543754, 347618918364, 9080945744920, 255239884317292, 7680997048377377, 246417820289930866, 8395878803694101510, 302786064773642534220, 11523127939987785101646, 461518291638811484923036
OFFSET
0,4
LINKS
FORMULA
a(n) ~ c * 2^n * (n-1)!, where c = 0.09202081821632249728460... . - Vaclav Kotesovec, Jul 10 2015
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 9*x^4 + 66*x^5 + 646*x^6 + 7760*x^7 +...
The logarithmic derivative begins:
A'(x)/A(x) = 1 + x + 4*x^2 + 29*x^3 + 286*x^4 + 3478*x^5 + 49750*x^6 + 813949*x^7 +...+ A182356(n)*x^n +...
where
A'(x)^2/A(x)^2 = 1 + 2*x + 9*x^2 + 66*x^3 + 646*x^4 + 7760*x^5 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x + x^2*(A')^2/A^2 +x*O(x^n)); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A182356.
Sequence in context: A228696 A042255 A152213 * A214930 A089471 A196193
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 05 2015
STATUS
approved