login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = Series_Reversion( x - 2*x*A(x) - Integral 2*A(x) dx ).
3

%I #11 Aug 24 2017 10:47:18

%S 1,3,26,320,4776,81018,1510336,30328173,647535770,14569480376,

%T 343234151688,8425926474186,214747018423616,5665854689772960,

%U 154393844206506248,4337151982457354192,125404753959532852236,3727264826995512243092,113749283318621304173840,3560977119168952929308604

%N G.f. A(x) satisfies: A(x) = Series_Reversion( x - 2*x*A(x) - Integral 2*A(x) dx ).

%H Vaclav Kotesovec, <a href="/A259610/b259610.txt">Table of n, a(n) for n = 1..300</a>

%F G.f. A(x) satisfies:

%F (1) A(x) = Series_Reversion( x - Sum_{n>=1} 2*(n+2) * a(n) * x^(n+1)/(n+1) ).

%F (2) A(x) = x + Sum_{n>=1} 2*(n+2) * a(n) * A(x)^(n+1) / (n+1).

%F Let B(x) = Integral 2*A(x) dx, then

%F (3) A(x) = x + Sum_{n>=1} d^(n-1)/dx^(n-1) (2*x*A(x) + B(x))^n / n!.

%F (4) A(x) = x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (2*x*A(x) + B(x))^n / (n!*x) ).

%F a(n) = (n+1)*A259611(n+1)/2 for n>=1.

%e G.f. A(x) = x + 3*x^2 + 26*x^3 + 320*x^4 + 4776*x^5 + 81018*x^6 +...

%e such that

%e Series_Reversion(A(x)) = x - 3*x^2 - 8*x^3 - 65*x^4 - 768*x^5 - 11144*x^6 - 185184*x^7 - 3398256*x^8 - 67395940*x^9 +...+ -2*(n+2)/(n+1)*a(n)*x^(n+1) +...

%e Let B(x) = Integral 2*A(x) dx, an integer series that begins:

%e B(x) = x^2 + 2*x^3 + 13*x^4 + 128*x^5 + 1592*x^6 + 23148*x^7 + 377584*x^8 + 6739594*x^9 +...+ A259611(n)*x^n +...

%e then A(x - 2*x*A(x) - B(x)) = x.

%e Also,

%e A(x) = x + (2*x*A(x) + B(x)) + [d/dx (2*x*A(x) + B(x))^2]/2! + [d^2/dx^2 (2*x*A(x) + B(x))^3]/3! + [d^3/dx^3 (2*x*A(x) + B(x))^4]/4! + [d^4/dx^4 (2*x*A(x) + B(x))^5]/5! +...

%e Logarithmic series:

%e log(A(x)/x) = (2*x*A(x) + B(x))/x + [d/dx (2*x*A(x) + B(x))^2/x]/2! + [d^2/dx^2 (2*x*A(x) + B(x))^3/x]/3! + [d^3/dx^3 (2*x*A(x) + B(x))^4/x]/4! + [d^4/dx^4 (2*x*A(x) + B(x))^5/x]/5! +...

%o (PARI) {a(n)=local(A=x); for(i=0, n, A = serreverse(x - 2*x*A - intformal(2*A) +x*O(x^n))); polcoeff(A, n)}

%o for(n=1, 25, print1(a(n), ", "))

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

%o {a(n)=local(A=x, B=x^2); for(i=1, n, B=intformal(2*A); A = x + sum(m=1, n, Dx(m-1, (2*x*A + B)^m/m!)) +O(x^(n+1))); polcoeff(A, n)}

%o for(n=1, 25, print1(a(n), ", "))

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

%o {a(n)=local(A=x, B=x^2); for(i=1, n, B=intformal(2*A); A = x*exp(sum(m=1, n, Dx(m-1, (2*x*A + B)^m/(m!*x))) +O(x^(n+1)))); polcoeff(A, n)}

%o for(n=1, 25, print1(a(n), ", "))

%Y Cf. A259611, A259612.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jun 30 2015