login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A283298
Diagonal of the Euler-Seidel matrix for the Catalan numbers.
2
1, 3, 26, 305, 4120, 60398, 934064, 15000903, 247766620, 4182015080, 71816825856, 1250772245698, 22039796891026, 392213323252200, 7038863826811100, 127248841020380105, 2315130641074743540, 42358284517663463380, 778876539384226875800
OFFSET
0,2
LINKS
Paul Barry and A. Hennessy, The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences, J. Int. Seq. 13 (2010) # 10.8.2, Example 11.
FORMULA
a(n) = Sum_{i=0..n} binomial(n,i) * A000108(n+i).
D-finite with recurrence 2*n*(2*n+1)*(9*n-11)*a(n) +(-711*n^3+1589*n^2-986*n+144)*a(n-1) -10*(n-1)*(9*n-2)*(2*n-3)*a(n-2)=0.
MAPLE
A000108 := n-> binomial(2*n, n)/(n+1):
A283298 := proc(n)
add(binomial(n, i)*A000108(n+i), i=0..n) ;
end proc:
seq(A283298(n), n=0..30) ;
MATHEMATICA
Table[Sum[Binomial[n, i] CatalanNumber[n + i], {i, 0, n}], {n, 0, 50}] (* Indranil Ghosh, Jul 20 2017 *)
PROG
(Python)
from sympy import binomial, catalan
def a(n): return sum(binomial(n, i)*catalan(n + i) for i in range(n + 1))
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 20 2017
(PARI) C(n) = binomial(2*n, n)/(n+1); \\ A000108
a(n) = sum(i=0, n, binomial(n, i) * C(n+i)); \\ Michel Marcus, Nov 12 2022
CROSSREFS
Central elements of rows in A106534, A280470.
Cf. A000108.
Sequence in context: A379602 A204561 A126738 * A377652 A259610 A326396
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jul 20 2017
STATUS
approved