login
A379602
a(n) is the least n-digit number whose square contains only digits greater than 5.
1
3, 26, 264, 3114, 25824, 260167, 2639867, 25845676, 260147437, 2582245083, 25843178924, 258241744863, 2582010592114, 25825761924437, 258218875510676, 2581990857627114, 25820083014911063, 258199298347206526, 2581988959445543367, 25819892911624938937, 258198891881411585714
OFFSET
1,1
COMMENTS
Exists for all n because A379603(n) does (see Formulas there). - Michael S. Branicky, Dec 30 2024
EXAMPLE
a(3) = 264 because among all 3-digit numbers, 264 is the smallest whose square 69696 contains only digits greater than 5.
MATHEMATICA
f[m_] := For[k = Ceiling@Sqrt[100^m/15], k < 10^m - 1, k++, If[Min@IntegerDigits[k^2] > 5, Return[k]; ]]; Table[f[m], {m, 10}]
KEYWORD
nonn,base
AUTHOR
Zhining Yang, Dec 27 2024
EXTENSIONS
a(9) corrected and a(11) inserted by Michael S. Branicky, Dec 27 2024
More terms from Jinyuan Wang, Dec 27 2024
STATUS
approved