OFFSET
1,1
COMMENTS
There are just 13 terms < 32*10^8.
3 is the only term whose square has a digit average that is an integer.
The squares of the first few terms have digit averages 9, 8.1, 8.08333, 8.15385, 8.06667, 8.125, 8.125, 8.22222, 8.05263, 8.05263, 8.10526, 8.10526, 8.05263, ...
The sequence contains all numbers of the form floor(30*100^k - 10^k*5/3), k > 5. As of today, we know of only 9 numbers whose square has a digit mean above 8.25: 3, 707106074079263583, 943345110232670883, 94180040294109027313, 2976388751488907738914, 312713447088224669275583, 893241282627485818275387, 314610537013606681884298837387 and 9984988582817657883693383344833. - M. F. Hasler, Apr 11 and Apr 13 2023
LINKS
Ed Pegg, 314610537013606681884298837387, math-fun mailing list, April 11, 2023.
PROG
(PARI) for(L=1, oo, for(n=sqrtint(10^(L-1)-1)+1, sqrtint(10^L-1), sumdigits(n^2) > 8*L && print1(n", "))) \\ M. F. Hasler, Apr 11 2023
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Aug 28 2009
EXTENSIONS
a(14)-a(23) from Lars Blomberg, Apr 29 2013
STATUS
approved