login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164841
Numbers whose squares have a digit average greater than 8.
4
3, 94863, 987917, 3162083, 29983327, 99477133, 99483667, 994927133, 2428989417, 2754991833, 2983284917, 2999833327, 3157196367, 9380293167, 9486778167, 28105157886, 31144643167, 31304790167, 31459487917, 31464263856, 94286790167, 99497231067, 244272388937
OFFSET
1,1
COMMENTS
There are just 13 terms < 32*10^8.
3 is the only term whose square has a digit average that is an integer.
The squares of the first few terms have digit averages 9, 8.1, 8.08333, 8.15385, 8.06667, 8.125, 8.125, 8.22222, 8.05263, 8.05263, 8.10526, 8.10526, 8.05263, ...
The sequence contains all numbers of the form floor(30*100^k - 10^k*5/3), k > 5. As of today, we know of only 9 numbers whose square has a digit mean above 8.25: 3, 707106074079263583, 943345110232670883, 94180040294109027313, 2976388751488907738914, 312713447088224669275583, 893241282627485818275387, 314610537013606681884298837387 and 9984988582817657883693383344833. - M. F. Hasler, Apr 11 and Apr 13 2023
LINKS
Ed Pegg, 314610537013606681884298837387, math-fun mailing list, April 11, 2023.
PROG
(PARI) for(L=1, oo, for(n=sqrtint(10^(L-1)-1)+1, sqrtint(10^L-1), sumdigits(n^2) > 8*L && print1(n", "))) \\ M. F. Hasler, Apr 11 2023
CROSSREFS
Cf. A164771 (s=1), A164770 (s=2), A164782 (s=3), A164776 (s=4), A164774 (s=5), A164779 (s=6), A164773 (s=7), A164772 (s=8).
Cf. A164842 (s < 1).
Sequence in context: A213000 A151594 A119119 * A171366 A292691 A086785
KEYWORD
base,nonn
AUTHOR
Zak Seidov, Aug 28 2009
EXTENSIONS
a(14)-a(23) from Lars Blomberg, Apr 29 2013
STATUS
approved