This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A283299 Number of ways to write 2*n + 1 as x^2 + 2*y^2 + 3*z^2 with x,y,z integers such that x + y + z is a square or twice a square. 2
 1, 4, 3, 1, 6, 3, 1, 7, 1, 2, 8, 4, 4, 4, 3, 5, 4, 1, 4, 9, 3, 3, 9, 1, 4, 10, 3, 3, 11, 7, 4, 8, 5, 6, 7, 6, 2, 10, 3, 3, 14, 1, 2, 5, 3, 6, 12, 2, 4, 11, 3, 2, 5, 5, 7, 14, 6, 4, 6, 7, 4, 5, 4, 3, 13, 3, 3, 12, 3, 2, 15, 2, 2, 12, 3, 7, 4, 5, 4, 11, 8 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 3, 6, 8, 17, 23, 41, 128, 197, 372, 764, 1143, 1893, 3761, 4307, 6408, 6918. (ii) Any positive odd integer can be written as x^2 + y^2 + 2*z^2 with x,y,z integers such that x + 2*y + 3*z is a square or twice a square. By Dickson's book in the reference, any positive odd integer can be written as x^2 + 2*y^2 + 3*z^2 (or x^2 + y^2 + 2*z^2) with x,y,z integers. We have verified a(n) > 0 for all n = 0..10^6. See also A283366 for a similar conjecture. REFERENCES L. E. Dickson, Modern Elementary Theory of Numbers, University of Chicago Press, Chicago, 1939. (See pages 112-113.) LINKS Zhi-Wei Sun, Table of n, a(n) for n = 0..10000 Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. Zhi-Wei Sun, Restricted sums of four squares, arXiv:1701.05868 [math.NT], 2017. EXAMPLE a(0) = 1 since 2*0 + 1 = 1^2 + 2*0^2 + 3*0^2 with 1 + 0 + 0 = 1^2. a(3) = 1 since 2*3 + 1 = 2^2 + 2*0^2 + 3*(-1)^2 with 2 + 0 + (-1) = 1^2. a(8) = 1 since 2*8 + 1 = 3^2 + 2*(-2)^2 + 3*0^2 with 3 + (-2) + 0 = 1^2. a(17) = 1 since 2*17 + 1 = 0^2 + 2*(-2)^2 + 3^2 with 0 + (-2) + 3 = 1^2. a(41) = 1 since 2*41 + 1 = 9^2 + 2*(-1)^2 + 3*0^2 with 9 + (-1) + 0 = 2*2^2. a(128) = 1 since 2*128 + 1 = 3^2 + 2*10^2 + 3*(-4)^2 with 3 + 10 + (-4) = 3^2. a(197) = 1 since 2*197 + 1 = 12^2 + 2*(-2)^2 + 3*(-9)^2 with 12 + (-2) + (-9) = 1^2. a(372) = 1 since 2*372 + 1 = 22^2 + 2*3^2 + 3*(-9)^2 with 22 + 3 + (-9) = 4^2. a(764) = 1 since 2*764 + 1 = 18^2 + 2*(-23)^2 + 3*7^2 with 18 + (-23) + 7 = 2*1^2. a(3761) = 1 since 2*3761 + 1 = (-57)^2 + 2*31^2 + 3*28^2 with (-57) + 31 + 28 = 2*1^2. a(6408) = 1 since 2*6408 + 1 = (-22)^2 + 2*75^2 + 3*19^2 with (-22) + 75 + 19 = 2*6^2. a(6918) = 1 since 2*6918 + 1 = 100^2 + 2*9^2 + 3*35^2 with 100 + 9 + 35 = 12^2. MATHEMATICA SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; TQ[n_]:=TQ[n]=SQ[n]||SQ[2n]; Do[r=0; Do[If[SQ[2n+1-3x^2-2y^2]&&TQ[(-1)^i*x+(-1)^j*y+(-1)^k*Sqrt[2n+1-3x^2-2y^2]], r=r+1], {x, 0, Sqrt[(2n+1)/3]}, {y, 0, Sqrt[(2n+1-3x^2)/2]}, {i, 0, Min[x, 1]}, {j, 0, Min[y, 1]}, {k, 0, Min[Sqrt[2n+1-3x^2-2y^2], 1]}]; Print[n, " ", r]; Continue, {n, 0, 80}] CROSSREFS Cf. A000290, A271518, A283239, A283269, A283273, A283366. Sequence in context: A275981 A087274 A253182 * A190157 A103552 A127673 Adjacent sequences:  A283296 A283297 A283298 * A283300 A283301 A283302 KEYWORD nonn AUTHOR Zhi-Wei Sun, Mar 05 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 16 07:12 EST 2018. Contains 317258 sequences. (Running on oeis4.)