login
A283296
Integers n such that floor(n^(3/2)) is cubefree.
2
1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 65, 67, 69, 70, 71, 72, 73, 74, 75, 76, 80, 82, 84, 86, 87, 88, 89, 90
OFFSET
1,2
COMMENTS
Zang & Li prove that this sequence is infinite.
The asymptotic density of this sequence is 1/zeta(3) (A088453) (Zang and Li, 2017). - Amiram Eldar, Feb 17 2021
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Min Zhang and Jinjiang Li, Distribution of cube-free numbers with form [n^c], Frontiers of Mathematics in China, Vol. 12 (2017), pp. 1515-1525; arXiv preprint, arXiv:1702.00165 [math.NT], 2017.
MATHEMATICA
Select[Range[90], Max[FactorInteger[Floor[#^(3/2)]][[All, 2]]] < 3&] (* Jean-François Alcover, Feb 23 2019 *)
PROG
(PARI) isok(n) = if (n < 4, 1, vecmax(factor(sqrtint(n^3))[, 2]) < 3);
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Marcus, Mar 04 2017
STATUS
approved