login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A283301 Numerators of coefficients at even powers in Taylor series expansion of log(x/sin(x)). 2
0, 1, 1, 1, 1, 1, 691, 2, 3617, 43867, 174611, 155366, 236364091, 1315862, 3392780147, 6892673020804, 7709321041217, 151628697551, 26315271553053477373, 308420411983322, 261082718496449122051, 3040195287836141605382, 2530297234481911294093 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

This sequence shares many terms with A046988 (and appears to have been erroneously confused with it), but actually differs from it at indexes 0, 14, 22, 26, 28, 30, 38, 42, 44, 46, 50, 52, 54, 56, 58, 60, ...

REFERENCES

L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205

T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 222, series for log(H(x)/x).

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.

CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.

LINKS

Table of n, a(n) for n=0..22.

FORMULA

log(x/sin(x)) = Sum_{n>0} (2^(2*n-1)*(-1)^(n+1)*B(2*n)/(n*(2*n)!) * x^(2*n)). - Ralf Stephan, Apr 01 2015 [corrected by Roland J. Etienne, Apr 19 2016]

EXAMPLE

log(x/sin(x)) = 1/6*x^2+1/180*x^4+1/2835*x^6+1/37800*x^8+1/467775*x^10+691/3831077250 x^12 ...

MATHEMATICA

a[0] = 0; a[n_] := Numerator[((-1)^(n + 1) 2^(2 n - 1) BernoulliB[2 n])/(n (2 n)!)]; Table[a[n], {n, 0, 20}] (* or *)

Numerator@Table[SeriesCoefficient[Log[x/Sin[x]], {x, 0, 2n}], {n, 0, 20}]

CROSSREFS

Cf. A046989 (denominators), A046988.

Sequence in context: A001067 A141590 A276594 * A046988 A189683 A029825

Adjacent sequences:  A283298 A283299 A283300 * A283302 A283303 A283304

KEYWORD

nonn,frac,nice

AUTHOR

Vladimir Reshetnikov, Mar 04 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 01:46 EDT 2019. Contains 326059 sequences. (Running on oeis4.)