login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A283301
Numerators of coefficients at even powers in Taylor series expansion of log(x/sin(x)).
2
0, 1, 1, 1, 1, 1, 691, 2, 3617, 43867, 174611, 155366, 236364091, 1315862, 3392780147, 6892673020804, 7709321041217, 151628697551, 26315271553053477373, 308420411983322, 261082718496449122051, 3040195287836141605382, 2530297234481911294093
OFFSET
0,7
COMMENTS
This sequence shares many terms with A046988 (and appears to have been erroneously confused with it), but actually differs from it at indexes 0, 14, 22, 26, 28, 30, 38, 42, 44, 46, 50, 52, 54, 56, 58, 60, ...
REFERENCES
L. V. Ahlfors, Complex Analysis, McGraw-Hill, 1979, p. 205
T. J. I'a. Bromwich, Introduction to the Theory of Infinite Series, Macmillan, 2nd. ed. 1949, p. 222, series for log(H(x)/x).
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 42.
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 32, equation 32:6:4 at page 301.
FORMULA
log(x/sin(x)) = Sum_{n>0} (2^(2*n-1)*(-1)^(n+1)*B(2*n)/(n*(2*n)!) * x^(2*n)). - Ralf Stephan, Apr 01 2015 [corrected by Roland J. Etienne, Apr 19 2016]
EXAMPLE
log(x/sin(x)) = (1/6)*x^2 + (1/180)*x^4 + (1/2835)*x^6 + (1/37800)*x^8 + (1/467775)*x^10 + (691/3831077250)*x^12 + ...
MATHEMATICA
a[0] = 0; a[n_] := Numerator[((-1)^(n + 1) 2^(2 n - 1) BernoulliB[2 n])/(n (2 n)!)]; Table[a[n], {n, 0, 20}] (* or *)
Numerator@Table[SeriesCoefficient[Log[x/Sin[x]], {x, 0, 2n}], {n, 0, 20}]
CROSSREFS
Cf. A046989 (denominators), A046988.
Sequence in context: A001067 A141590 A276594 * A046988 A189683 A029825
KEYWORD
nonn,frac,nice
AUTHOR
STATUS
approved