login
A379879
E.g.f. A(x) satisfies A(x) = exp(-x) + x*A(x)^2.
4
1, 0, 1, 5, 41, 439, 5869, 94275, 1770705, 38102255, 924580181, 24984120523, 744154938361, 24224671103463, 855748556756157, 32604902612628419, 1332864500919743393, 58192519232324179423, 2702582455278623736997, 133037424985668849756603
OFFSET
0,4
FORMULA
E.g.f.: 2*exp(-x)/(1 + sqrt(1 - 4*x*exp(-x))).
a(n) = -n! * Sum_{k=0..n} (-k-1)^(n-k-1) * binomial(2*k,k)/(n-k)!.
a(n) ~ sqrt(1 + LambertW(-1/4)) * n^(n-1) / (2^(3/2) * (-LambertW(-1/4))^(n+1) * exp(n)). - Vaclav Kotesovec, Jan 23 2025
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(2*exp(-x)/(1+sqrt(1-4*x*exp(-x)))))
(PARI) a(n) = -n!*sum(k=0, n, (-k-1)^(n-k-1)*binomial(2*k, k)/(n-k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 05 2025
STATUS
approved