login
A366112
Expansion of (1/x) * Series_Reversion( x*(1-x-x^5)/(1-x) ).
2
1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 7, 14, 22, 31, 41, 103, 235, 457, 791, 1261, 2399, 5015, 10257, 19676, 35296, 65170, 127520, 256187, 507601, 969495, 1834433, 3534477, 6962249, 13809538, 27061252, 52439361, 101701035, 199152071, 393332277, 776589611, 1525416837
OFFSET
0,11
FORMULA
a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n+k,k) * binomial(n-4*k-1,n-5*k).
PROG
(PARI) a(n) = sum(k=0, n\5, binomial(n+k, k)*binomial(n-4*k-1, n-5*k))/(n+1);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 29 2023
STATUS
approved